3 resultados para LDH and PepX
em DigitalCommons@The Texas Medical Center
Resumo:
Electrophoretic variants at four additional enzyme loci--two esterases (Est-2, Est-3), retinal lactate dehydrogenase (LDH-1) and mannose phosphate isomerase (MPI)--among three species and four subspecies of fish of the genus Xiphophorus were observed. Electrophoretic patterns in F1 hybrid heterozygotes confirmed the monomeric structures of MPI and the esterase and the tetrametric structure of LDH in these fishes. Variant alleles of all four loci displayed normal Mendelian segregation in backcross and F2 hybrids. Recombination data from backcross hybrids mapped with Haldane's mapping function indicate the four loci to be linked as Est-2--0.43--Est3--0.26--LDH-1--0.19--MPI. Significant interference was detected and apparently concentrated in the Est-3 to MPI region. No significant sex-specific differences in recombination were observed. This group (designated linkage group II) was shown to assort independently from the three loci of linkage group I (adenosine deaminase, glucose-6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase) and from glyceraldehyde-3-phosphate dehydrogenase and two isocitrate dehydrogenase loci. Evidence for conservation of the linkage group, at least in part, in other vertebrate species is presented.
Resumo:
Glutathione (GSH) is involved in the detoxication of numerous chemicals exogenously exposed or endogenously generated. Exposure to these agents cause depletion of cellular GSH rendering these cells more susceptible to the toxic action of these same agents. Formaldehyde (CH(,2)O) was found to deplete cellular GSH, presumably by the formation of the GSH-CH(,2)O complex, S-hydroxymethylglutathione, and its rapid extrusion into the extracellular medium.^ The metabolism and toxicity of CH(,2)O were determined to be dependent upon cellular GSH in vitro and in vivo. The rate of CH(,2)O oxidation decreased and the extent of toxicity increased when isolated rat hepatocytes or strain A/J mice were pretreated with the GSH-depleting agent, diethyl maleate (DEM). Additional experiments were designed to further study the role GSH plays in detoxication using isolated rat hepatocytes.^ L-Methionine protected against the extent of lipid peroxidation and leakage of the cytosolic enzyme, lactate dehydrogenase (LDH), caused by CH(,2)O in DEM-pretreated hepatocytes, further supporting the protective role of GSH against cellular toxicity. The antioxidants, ascorbate, butylated hydroxytoluene, and (alpha)-tocopherol, were all protective against the extent of lipid peroxidation and leakage of LDH in isolated rat hepatocytes. Whereas L-methionine may be protective by increasing the cellular concentration of GSH which is used to detoxify free radicals or by facilitating the rate of CH(,2)O oxidation, the antioxidant, ascorbate, was protective without altering the rate of CH(,2)O oxidation or increasing cellular GSH levels. These results suggest that the free radical-mediated toxicity caused by CH(,2)O in DEM-pretreated hepatocytes is due to the further depletion of GSH by CH(,2)O and not to increased CH(,2)O persistence. How this further depletion in GSH by CH(,2)O in DEM-pretreated hepatocytes results in lipid peroxidation and cell death was further investigated.^ The further decrease in GSH caused by CH(,2)O in DEM-pretreated hepatocytes, suspected of stimulating lipid peroxidation and cell death, was found not to be due to depletion of mitochondrial GSH but to depletion of protein sulfhydryl groups. In addition, cellular toxicity appears more closely correlated with depletion of protein sulfhydryl groups than with an increase in cytosolic free Ca('2+). The combination of CH(,2)O and DEM may be a useful tool in identifying these critical sulfhydryl-protein(s) and to further understand the role GSH plays in detoxication. ^
Resumo:
Introduction and objective. A number of prognostic factors have been reported for predicting survival in patients with renal cell carcinoma. Yet few studies have analyzed the effects of those factors at different stages of the disease process. In this study, different stages of disease progression starting from nephrectomy to metastasis, from metastasis to death, and from evaluation to death were evaluated. ^ Methods. In this retrospective follow-up study, records of 97 deceased renal cell carcinoma (RCC) patients were reviewed between September 2006 to October 2006. Patients with TNM Stage IV disease before nephrectomy or with cancer diagnoses other than RCC were excluded leaving 64 records for analysis. Patient TNM staging, Furhman Grade, age, tumor size, tumor volume, histology and patient gender were analyzed in relation to time to metastases. Time from nephrectomy to metastasis, TNM staging, Furhman Grade, age, tumor size, tumor volume, histology and patient gender were tested for significance in relation to time from metastases to death. Finally, analysis of laboratory values at time of evaluation, Eastern Cooperative Oncology Group performance status (ECOG), UCLA Integrated Staging System (UISS), time from nephrectomy to metastasis, TNM staging, Furhman Grade, age, tumor size, tumor volume, histology and patient gender were tested for significance in relation to time from evaluation to death. Linear regression and Cox Proportional Hazard (univariate and multivariate) was used for testing significance. Kaplan-Meier Log-Rank test was used to detect any significance between groups at various endpoints. ^ Results. Compared to negative lymph nodes at time of nephrectomy, a single positive lymph node had significantly shorter time to metastasis (p<0.0001). Compared to other histological types, clear cell histology had significant metastasis free survival (p=0.003). Clear cell histology compared to other types (p=0.0002 univariate, p=0.038 multivariate) and time to metastasis with log conversion (p=0.028) significantly affected time from metastasis to death. A greater than one year and greater than two year metastasis free interval, compared to patients that had metastasis before one and two years, had statistically significant survival benefit (p=0.004 and p=0.0318). Time from evaluation to death was affected by greater than one year metastasis free interval (p=0.0459), alcohol consumption (p=0.044), LDH (p=0.006), ECOG performance status (p<0.001), and hemoglobin level (p=0.0092). The UISS risk stratified the patient population in a statistically significant manner for survival (p=0.001). No other factors were found to be significant. ^ Conclusion. Clear cell histology is predictive for both time to metastasis and metastasis to death. Nodal status at time of nephrectomy may predict risk of metastasis. The time interval to metastasis significantly predicts time from metastasis to death and time from evaluation to death. ECOG performance status, and hemoglobin levels predicts survival outcome at evaluation. Finally, UISS appropriately stratifies risk in our population. ^