15 resultados para Knock out
em DigitalCommons@The Texas Medical Center
Resumo:
Integrins comprise a large family of cell adhesion receptors that mediate diverse biological events through cell-cell and cell-extracellular matrix interactions. Recent studies have shown that several integrins are localized to synapses with suggested roles in synaptic plasticity and memory formation. We generated a postnatal forebrain and excitatory neuron-specific knock-out of beta1-integrin in the mouse. Electrophysiological studies demonstrated that these mutants have impaired synaptic transmission through AMPA receptors and diminished NMDA receptor-dependent long-term potentiation. Despite the impairment in hippocampal synaptic transmission, the mutants displayed normal hippocampal-dependent spatial and contextual memory but were impaired in a hippocampal-dependent, nonmatching-to-place working memory task. These phenotypes parallel those observed in animals carrying knock-outs of the GluR1 (glutamate receptor subunit 1) subunit of the AMPA receptor. These observations suggest a new function of beta1-integrins as regulators of synaptic glutamate receptor function and working memory.
Resumo:
Catenins have diverse and powerful roles in embryogenesis, homeostasis or disease progression, as best exemplified by the well-known beta-catenin. The less studied delta-catenin likewise contains a central Armadillo-domain. In common with other p120 sub-class members, it acts in a variety of intracellular compartments and modulates cadherin stability, small GTPase activities and gene transcription. In mammals, delta-catenin exhibits neural specific expression, with its knock-out in mice correspondingly producing cognitive defects and synaptic dysfunctions. My work instead employed the amphibian, Xenopus laevis, to explore delta-catenin’s physiological functions in a distinct vertebrate system. Initial isolation and characterization indicated delta-catenin’s expression in Xenopus. Unlike the pattern observed for mammals, delta-catenin was detected in most adult Xenopus tissues, although enriched in embryonic structures of neural fate as visualized using RNA in-situ hybridization. To determine delta-catenin’s requirement in amphibian development, I employed anti-sense morpholinos to knock-down gene products, finding that delta-catenin depletion results in developmental defects in gastrulation, neural crest migration and kidney tubulogenesis, phenotypes that were specific based upon rescue experiments. In biochemical and cellular assays, delta-catenin knock-down reduced cadherin levels and cell adhesion, and impaired activation of RhoA and Rac1, small GTPases that regulate actin dynamics and morphogenetic movements. Indeed, exogenous C-cadherin, or dominant-negative RhoA or dominant-active Rac1, significantly rescued delta-catenin depletion. Thus, my results indicate delta-catenin’s essential roles in Xenopus development, with contributing functional links to cadherins and Rho family small G proteins. In examining delta-catenin’s nuclear roles, I identified delta-catenin as an interacting partner and substrate of the caspase-3 protease, which plays critical roles in apoptotic as well as non-apoptotic processes. Delta-catenin’s interaction with and sensitivity to caspase-3 was confirmed using assays involving its cleavage in vitro, as well as within Xenopus apoptotic extracts or mammalian cell lines. The cleavage site, a highly conserved caspase consensus motif (DELD) within Armadillo-repeat 6 of delta-catenin, was identified through peptide sequencing. Cleavage thus generates an amino- (1-816) and carboxyl-terminal (817-1314) fragment each containing about half of the central Armadillo-domain. I found that cleavage of delta-catenin both abolishes its association with cadherins, and impairs its ability to modulate small GTPases. Interestingly, the carboxyl-terminal fragment (817-1314) possesses a conserved putative nuclear localization signal that I found is needed to facilitate delta-catenin’s nuclear targeting. To probe for novel nuclear roles of delta-catenin, I performed yeast two-hybrid screening of a mouse brain cDNA library, resolving and then validating its interaction with an uncharacterized KRAB family zinc finger protein I named ZIFCAT. My results indicate that ZIFCAT is nuclear, and suggest that it may associate with DNA as a transcriptional repressor. I further determined that other p120 sub-class catenins are similarly cleaved by caspase-3, and likewise bind ZIFCAT. These findings potentially reveal a simple yet novel signaling pathway based upon caspase-3 cleavage of p120 sub-family members, facilitating the coordinate modulation of cadherins, small GTPases and nuclear functions. Together, my work suggested delta-catenin’s essential roles in Xenopus development, and has revealed its novel contributions to cell junctions (via cadherins), cytoskeleton (via small G proteins), and nucleus (via ZIFCAT). Future questions include the larger role and gene targets of delta-catenin in nucleus, and identification of upstream signaling events controlling delta-catenin’s activities in development or disease progression.
Resumo:
The skin is composed of two major compartments, the dermis and epidermis. The epidermis forms a barrier to protect the body. The stratified epithelium has self-renewing capacity throughout life, and continuous turnover is mediated by stem cells in the basal layer. p63 is structurally and functionally related to p53. In spite of their structural similarities, p63 is critical for the development and maintenance of stratified epithelial tissues, unlike p53. p63 is highly expressed in the epidermis and previously has been shown to play a critical role in the development and maintenance of the epidermis. The study of p63 has been complicated due to the existence of multiple isoforms: those with a transactivation domain (TAp63) and those lacking this domain (ΔNp63). Mice lacking p63 cannot form skin, have craniofacial and skeletal defects and die within hours after birth. These defects are due to the ability of p63 to regulate multiple processes in skin development including epithelial stem cell proliferation, differentiation, and adherence programs. To determine the roles of these isoforms in skin development and maintenance, isoform specific p63 conditional knock out mice were generated by our lab. TAp63-/- mice age prematurely, develop blisters, and display wound-healing defects that result from hyperproliferation of dermal stem cells. That results in premature depletion of these cells, which are necessary for wound repair, that indicates TAp63 plays a role in dermal/epidermal maintenance. To study the role of ΔNp63, I generated a ΔNp63-/- mouse and analyzed the skin by performing immunofluorescence for markers of epithelial differentiation. The ΔNp63-/- mice developed a thin, disorganized epithelium but differentiation markers were expressed. Interestingly, the epidermis from ΔNp63-/- mice co-expressed K14 and K10 in the same cell suggesting defects in epidermal differentiation and stratification. This phenotype is reminiscent of the DGCR8fl/fl;K14Cre and Dicerfl/fl;K14Cre mice skin. Importantly, DGCR8-/- embryonic stem cells (ESCs) display a hyperproliferation defect by failure to silence pluripotency genes. Furthermore, I have observed that epidermal cells lacking ΔNp63 display a phenotype reminiscent of embryonic stem cells instead of keratinocytes. Thus, I hypothesize that genes involved in maintaining pluripotency, like Oct4, may be upregulated in the absence of ΔNp63. To test this, q-RT PCR was performed for Oct4 mRNA with wild type and ΔNp63-/- 18.5dpc embryo skin. I found that the level of Oct4 was dramatically increased in the absence of ΔNp63-/-. Based on these results, I hypothesized that ΔNp63 induces differentiation by silencing pluripotency regulators, Oct4, Sox2 and Nanog directly through the regulation of DGCR8. I found that DGCR8 restoration resulted in repression of Oct4, Sox2 and Nanog in ΔNp63-/- epidermal cells and rescue differentiation defects. Loss of ΔNp63 resulted in pluripotency that caused defect in proper differentiation and stem cell like phenotype. This led me to culture the ΔNp63-/- epidermal cells in neuronal cell culture media in order to address whether restoration of DGCR8 can transform epidermal cells to neuronal cells. I found that DGCR8 restoration resulted in a change in cell fate. I also found that miR470 and miR145 play a role in the induction of pluripotency by repressing Oct4, Sox2 and Nanog. This indicates that ΔNp63 induces terminal differentiation through the regulation of DGCR8.
Resumo:
Mast cell degranulation is a highly regulated, calcium-dependent process, which is important for the acute release of inflammatory mediators during the course of many pathological conditions. We previously found that Synaptotagmin-2, a calcium sensor in neuronal exocytosis, was expressed in a mast cell line. We postulated that this protein may be involved in the control of mast cell-regulated exocytosis, and we generated Synaptotagmin-2 knock-out mice to test our hypothesis. Mast cells from this mutant animal conferred an abnormally decreased passive cutaneous anaphylaxis reaction on mast cell-deficient mice that correlated with a specific defect in mast cell-regulated exocytosis, leaving constitutive exocytosis and nonexocytic mast cell effector responses intact. This defect was not secondary to abnormalities in the development, maturation, migration, morphology, synthesis, and storage of inflammatory mediators, or intracellular calcium transients of the mast cells. Unlike neurons, the lack of Synaptotagmin-2 in mast cells was not associated with increased spontaneous exocytosis.
Resumo:
Tuberous Sclerosis Complex (TSC) is an autosomal dominant tumor suppressor disorder characterized by hamartomas, or benign growths, in various organ systems. Inactivating mutations in either the TSC1 or the TSC2 gene cause most cases of TSC. Recently, the use of ovarian specific conditional knock-out mouse models has demonstrated a crucial role of the TSC genes in ovarian function. Mice with complete deletion of Tsc1 or Tsc2 showed accelerated ovarian follicle activation and subsequent premature follicular depletion, consistent with the human condition premature ovarian failure (POF). POF is defined in women as the cessation of menses before the age of 40 and elevated levels of follicle stimulating hormone (FSH). The prevalence of POF is estimated to be 1%, affecting a substantial number of women in the general population. Nonetheless, the etiology of most cases of POF remains unknown. Based on the mouse model results, we hypothesized that the human TSC1 and TSC2 genes are likely to be crucial for ovarian development and function. Moreover, since women with TSC already have one inactivated TSC gene, we further hypothesized that they may show a higher prevalence of POF. To test this hypothesis, we surveyed 1000 women with TSC belonging to the Tuberous Sclerosis Alliance, a national support organization. 182 questionnaires were analyzed for information on menstrual and reproductive function, as well as TSC. This self-reported data revealed 8 women (4.4%) with possible POF, as determined by menstrual history report and additional supportive data. This prevalence is much higher than 1% in the general population. Data from all women suggested other reproductive pathology associated with TSC such as a high rate of miscarriage (41.2%) and menstrual irregularity of any kind (31.2%). These results establish a previously unappreciated effect of TSC on women’s reproductive health. Moreover, these data suggest that perturbations in the cellular pathways regulated by the TSC genes may play an important role in reproductive function.
Resumo:
Tuberculosis (TB) remains a major public health burden. The immunocompetant host responds to Mycobacterium tuberculosis (MTB) infection by the formation of granulomas, which initially prevent uncontrolled bacterial proliferation and dissemination. However, increasing evidence suggests that granuloma formation promotes persistence of the organism by physically separating infected cells from effector lymphocytes and by inducing a state of non-replicating persistence in the bacilli, making them resistant to the action of antibiotics. Additionally, immune-mediated tissue destruction likely facilitates disease transmission. The granulomatous response is in part due to mycobacterial glycolipid antigens. Therefore, studies were first undertaken to determine the innate mechanisms of mycobacterial cord factor trehalose-6’6-dimycolate (TDM) on granuloma formation. Investigations using knock-out mice suggest that TNF-a is involved in the initiation of the granulomatous response, complement factor C5a generates granuloma cohesiveness, and IL-6 is necessary for maintenance of an established granulomatous responses. Studies were next performed to determine the ability of lactoferrin to modulate the immune response and pathology to mycobacterial cord factor. Lactoferrin is an iron-binding glycoprotein with immunomodulatory properties that decrease tissue damage and promote Th1 responses. Mice challenged with TDM and treated with lactoferrin had decreased size and numbers of granulomas at the peak of the granulomatous response, accompanied by increased IL-10 and TGF-b production. Finally, the ability of lactoferrin to serve as a novel therapeutic for the treatment of TB was performed by aerosol challenging mice with MTB and treating them with lactoferrin added to the drinking water. Mice given tap water had lung log10 CFUs of 7.5 ± 0.3 at week 3 post-infection. Lung CFUs were significantly decreased in mice given lactoferrin starting the day of infection (6.4 ± 0.7) and mice started therapeutically on lactoferrin at day 7 after established infection (6.5 ± 0.4). Total lung inflammation in lactoferrin treated mice was significantly decreased, with fewer areas of macrophages, increased total lymphocytes, and increased numbers of CD4+ and CD8+ cells. The lungs of lactoferrin treated mice had increased CD4+ IFN-g+ cells and IL-17 producing cells on ELISpot analysis. It is hypothesized that lactoferrin decreases bacterial burden during MTB infection by early induction of Th1 responses.
Resumo:
The ERCC1 (Excision Repair Cross-Complementing-1) gene is the presumptive mammalian homolog of the Saccharomyces cerevisiae RAD10 gene. In mammalian NER, the Ercc1/XpF complex functions as an endonuclease that specifically recognizes 5$\sp\prime$ double-strand-3$\sp\prime$ single-strand structures. In yeast, the analogous function is performed by the Rad1/Rad10 complex. These observations and the conservation of amino acid homology between the Rad1 and XpF and the Rad10 and Ercc1 proteins has led to a general assumption of functional homology between these genes.^ In addition to NER, the Rad1/Rad10 endonuclease complex is also required in certain specialized mitotic recombination pathways in yeast. However, a similiar requirement for the endonuclease function of the Ercc1/XpF complex during genetic recombination in mammalian cells has not been directly demonstrated. The experiments performed in these studies were designed to determine if ERCC1 deficiency would produce recombination-deficient phenotypes in CHO cells similar to those observed in RAD10 deletion mutants, including: (1) decreased single-reciprocal exchange recombination, and (2) inability to process 5$\sp\prime$ sequence heterology in recombination intermediates.^ Specifically, these studies describe: (1) The isolation and characterization of the ERCC1 locus of Chinese hamster ovary cells; (2) The production of an ERCC1 null mutant cell line by targeted knock-out of the endogenous ERCC1 gene in a Chinese hamster ovary cell line, CHO-ATS49tg, which contains an endogenous locus, APRT, suitable as a chromosomal target for homologous recombination; (3) The characterization of mutant ERCC1 alleles from a panel of Chinese hamster ovary cell ERCC1 mutants derived by conventional mutagenesis; (4) An investigation of the effects of ERCC1 mutation on mitotic recombination through targeting of the APRT locus in an ERCC1 null background.^ The results of these studies strongly suggest that the role of ERCC1 in homologous recombination in mammalian cells is analogous to that of the yeast RAD10 gene. ^
Resumo:
The purpose of these studies was to investigate the role of interferon-beta (IFN-$\beta$) in angiogenesis. IFN-$\alpha/\beta$ have been implicated in inhibiting a number of steps in the angiogenic pathway. We examined the balance of angiogenesis-regulating molecules in several systems including human infantile hemangiomas, UV-B irradiated mice, and dorsal incisional wound healing in mice. In each system, epidermal hyperplasia and cutaneous angiogenesis were directly related to the expression of positive angiogenic factors (bFGF and VEGF) and inversely related to the expression of endogenous IFN-$\beta.$ The re-expression of IFN-$\beta$ correlated with tumor regression and/or resolution of wound healing. In contrast to control mice, UV-B-induced cutaneous angiogenesis and hyperplasia persisted in IFN-$\alpha/\beta$ receptor knock-out mice. In normal mice, endogenous IFN-$\beta$ was expressed by all differentiated epithelial cells exposed to environmental stimuli. The expression of endogenous IFN-$\beta$ was necessary but insufficient for complete differentiation of epidermal keratinocytes.^ The tumor organ microenvironment can regulate angiogenesis. Human bladder carcinoma cells growing in the bladder wall of nude mice express high levels of bFGF, VEGF, and MMP-9, have higher vascular densities, and produce metastases to lymph nodes and lungs, whereas the same cells growing subcutaneously express less bFGF, VEGF, and MMP-9, have lower vascular densities, and do not metastasize. IFN-$\alpha/\beta$ was found to inhibit bFGF and MMP-9 expression both in vitro and in vivo in human bladder carcinoma cells. Systemic therapy with human IFN-$\alpha$ of human bladder cancer cells growing orthotopically in nude mice, resulted in decreased vascularity, tumorigenicity, and metastasis as compared to saline treated mice. Human bladder cancer cells resistant to the antiproliferative effects of IFN were transfected with the human IFN-$\beta$ gene. Hu-IFN-$\beta$ transfected cells expressed significantly less bFGF protein and gelatinase activity than parental or control-transfected cells and did not grow at ectopic or orthotopic sites. Collectively the data provide direct evidence that IFN-$\alpha/\beta$ can inhibit angiogenesis via down-regulation of angiogenesis-stimulating cytokines. ^
Resumo:
Carboxypeptidase N (CPN) is a plasma zinc metalloprotease, which consists of two enzymatically active small subunits and two large subunits that protect the protein from degradation. CPN cleaves carboxy-terminal arginines and lysines from peptides found in the bloodstream such as complement anaphylatoxins, kinins, and creatine kinase MM. In this study, the mouse CPN small subunit (CPN1) coding region, gene structure, and chromosomal location were characterized and the expression of CPN1 was investigated in mouse embryos at different stages of development. The CPN1 gene, which was approximately 29 kb in length, contained nine exons and localized to mouse chromosome 19D2. The fifth and sixth exons of CPN1 encoded the amino acids necessary for substrate binding and catalytic activity. CPN1 RNA was expressed predominately in adult liver and contained a 1371 bp open reading frame encoding 457 amino acids. In the mouse embryo, CPN1 RNA was observed at 8.5 days post coitus (dpc), while its protein was detected at 10.5 dpc. In situ hybridization of the fetal liver detected CPN1 RNA in erythroid progenitor cells at 10.5, 13.5, and 16.5 dpc and in hepatocytes at 16.5 dpc. This was compared to the expression of the complement component C3, the parent molecule of complement anaphylatoxin C3a. Consistently throughout the experiments, CPN1 message and protein preceded the expression of C3. To obtain a better understanding of the biological significance of CPN1 in vivo, studies were initiated to produce a genetically engineered mouse in which the CPN1 gene was ablated. To facilitate this project a targeting vector was constructed by removing the functionally important fifth and sixth exons of the CPN1 gene. Collectively, these studies have: (1) provided important detailed information regarding the structure and organization of the murine CPN1 gene, (2) yielded insights into the developmental expression of mouse CPN1 in relationship to C3 expression, and (3) set the stage for the generation of a CPN1 “knock-out” mouse, which can be used to determine the biological significance of CPN1 in both normal and diseased conditions. ^
Resumo:
Metastasis, the major cause of morbidity and mortality in most cancers, is a highly organized and organ-selective process. The receptor tyrosine kinase HER2 enhances tumor metastasis, however, its role in homing to metastatic organs is poorly understood. The chemokine receptor CXCR4 has recently been shown to mediate the malignant cancer cells to specific organs. Here we show that HER2 enhances the expression of CXCR4 by increasing CXCR4 protein synthesis and inhibiting its degradation. We also observed significant correlation between HER2 and CXCR4 expression in human breast tumor tissues, and an association between CXCR4 expression and a poor overall survival rate in patients with breast cancer. Furthermore, we found that CXCR4 is required for HER2-induced invasion, migration, and adhesion activities in vitro . Finally we established stable transfectants using retroviral RNA interference to inhibit CXCR4 expression and showed that the CXCR4 is required for HER2-mediated lung metastasis in vivo. These results provide a plausible mechanism for HER2-mediated breast tumor metastasis and homing to metastatic organs, and establish a functional link between the receptor tyrosine kinase HER2 and the chemokine receptor CXCR4 signaling pathways. ^ The HER2 overexpression activates PI-3K/Akt pathways and plays an important role in mediating cell survival and tumor development. Hypoxia inducible factors (HIF) are the key regulator for angiogenesis and energy metabolism, and thereby enhance tumor growth and metastasis. HIF activation occurs in the majority of human cancers, including the HER2 overexpressing cancer cells. Previous reports suggested that increased PI-3K/Akt may activate HIF pathway in various tumors, but the detail mechanism is still not completely understood. Here we found that HER2/PI-3K/Akt pathway induces HIF-1α activation, which is independent of hypoxia, but relatively weaker than hypoxic stimulation. This phenomenon was further observed in Akt knock out mouse embryonic fibroblast cells. The PI-3K/Akt pathway does not affect HIF-1α binding with its E3 ligase VHL, but enhances the binding affinity between HIF-1α and β unit. Furthermore, we found Akt phosphorylates HIF-1β at serine 271 and further regulated HIF transcriptional activity. Our findings provided one mechanism that HER2 induce HIF activation via Akt to promote angiogenesis, and this process is independent on hypoxia, which may have implications in the oncogenic activity of HER2 and PI-3K/Akt pathway. ^
Resumo:
Extracellular signaling pathways initiated by secreted proteins are important in the co-ordination of tissue interactions in multi-cellular organisms, particularly during embryonic development. These signaling cascades direct diverse cellular events, including proliferation, differentiation and migration, in both autocrine and paracrine modes. In adult animals, abnormal function of these proteins often results in degenerative and tumourigenic syndromes. In this study, I have focused on elucidating the role of Bone Morphogenetic Protein (Bmp) signal transduction during neuronal specification and differentiation in the vertebrate embryo, using the mouse retina as a model. Using tissue-specific conditional knock-out approaches, the consequences of genetic loss-of-function of this signaling pathway on retinal physiology were examined. Mutant mice lacking Bmp type I receptor function displayed a range of retinal phenotypes, each of which appeared to be regulated at a different threshold of Bmp receptor activity. Novel essential functions for Bmp signaling were uncovered for retinal neurogenesis, cell survival, and axonal pathfinding at the optic disc. Further, BmprIa and BmprIa exhibited genetic interactions suggestive of functional redundancy. To further characterize the underlying molecular bases for the pleiotropic effects of Bmp receptors, retina-specific loss-of-function mutants of the obligate Bmp-activated transcriptional mediator Smad4 were generated. A comparison of the retina-specific Smad4 mutant phenotypes with those of the Bmp receptor mutant retina revealed that only a subset of retinal phenotypes, namely optic disc axon pathfinding and axial patterning were common for both classes of mutant animals. Thus, these results suggest that, contrary to the classic scheme of Bmp signal transduction, Smad4-independent pathways may be operative downstream of the type I receptors. Indeed, such alternative intracellular signaling cascades may constitute a molecular basis for the multiple cellular responses elicited by Bmp signaling. Finally, I tested whether the potential Bmp pathway targets, the extracellular ligands Fgf9 and Fgf15, mediate essential cellular processes in the retina. The analyses of Fgf9 −/−; Fgf15−/− mutant mice posit a novel shared role for these genes in intra-retinal axon pathfinding. Collectively, these studies have elucidated part of the molecular machinery directing mammalian neuro-retinal development, and provided useful in vivo models to study visual function. ^
Resumo:
Histone acetylation plays an essential role in many DNA-related processes such as transcriptional regulation via modulation of chromatin structure. Many histone acetytransferases have been discovered and studied in the past few years, but the roles of different histone acetyltransferases (HAT) during mammalian development are not well defined at present. Gcn5 histone acetyltransferase is highly expressed until E16.5 during development. Previous studies in our lab using a constitutive null allele demonstrated that Gcn5 knock out mice are embryonic lethal, precluding the study of Gcn5 functions at later developmental stages. The creation of a conditional Gcn5 null allele, Gcn5flox allele, bypasses the early lethality. Mice homozygous for this allele are viable and appear healthy. In contrast, mice homozygous for a Gcn5 Δex3-18 allele created by Cre-loxP mediated deletion display a phenotype identical to our original Gcn5 null mice. Strikingly, a Gcn5flox(neo) allele, which contain a neomycin cassette in the second intron of Gcn5 is only partially functional and gives rise to a hypomorphic phenotype. Initiation of cranial neural tube closure at forebrain/midbrain boundary fails, resulting in an exencephaly in some Gcn5flox(neo)/flox(neo) embryos. These defects were found at an even greater penetrance in Gcn5flox(neo)/Δ embryos and become completely penetrant in the 129Sv genetic background, suggesting that Gcn5 controls mouse neural tube closure in a dose dependent manner. Furthermore, both Gcn5flox(neo)/flox(neo) and Gcn5 flox(neo)/Δ embryos exhibit anterior homeotic transformations in lower thoracic and lumbar vertebrae. These defects are accompanied by decreased expression levels and a shift in anterior expression boundary of Hoxc8 and Hoxc9. This study provides the first evidence that Gcn5 regulates Hox gene expression and is required for normal axial skeletal patterning in mice. ^
Resumo:
MEKK3, a member of the MAP3K family, is involved in regulating multiple MAPK and NF-κB pathways. The MAPK and NF-κB signaling pathways are important in regulating T cell functions. MEKK3 is expressed through the development of T cell and also in subsets of T cell in the peripheral. However, the specific role of MEKK3 in T cell function is unknown. To reveal the in vivo function of MEKK3 in T cells, I have generated MEKK3 T cell conditional knock-out mice. Despite a normal thymus development in the conditional knock-out mice, I observed a decrease in the number of peripheral T-cells and impaired T-cell function in response to antigen stimulation. T cells undergo homeostatic proliferation under lymphopenia condition, a process called lymphopenia-induced proliferation (LIP). Using a LIP model, I demonstrated that the reduction of peripheral T cell number is largely due to a severe impairment of the self-antigen/MHC mediated T cell homeostasis. Upon anti-CD3 stimulation, the proliferation of MEKK3-deficient T cell is not significantly affected, but the production of IFNγ by naïve and effector CD4 T cells are markedly decreased. Interestingly, the IL-12/IL-18 driven IFNγ production and MAPK activation in MEKK3-deficient T cells is not affected, suggesting that MEKK3 selectively mediates the TCR induced MAPK signaling. Furthermore, I found that MEKK3 is activated by TCR stimulation in a RAC1/2 dependent manner, but not by IL-12/IL-18 stimulation. Finally, I showed that basal level of ERK and JNK activation is defective under LIP condition. I showed that the TCR induced ERK, JNK and p38 MAPK activation is also defective in MEKK3 deficient CD4 T cells. Taken together, my data demonstrate a crucial role of MEKK3 in T cell homeostasis and IFNγ production through regulating the TCR mediated MAPK pathway. ^
Resumo:
MicroRNAs play roles in various biological processes like development, tumorigenesis, metastasis and pluripotency. My thesis work has demonstrated roles for p63, a p53 family member, in the upstream regulation of microRNA biogenesis. The p63 gene has a complex gene structure and has multiple isoforms. The TAp63 isoforms contain an acidic transcription activation domain. The ΔNp63 isoforms, lack the TA domain, but have a proline rich region critical for gene transactivation. To understand the functions of these isoforms, the Flores lab generated TAp63 and ΔNp63 conditional knock out mice. Using these mice and tissues and cells from these mice we have found that TAp63 transcriptionally regulates Dicer while ΔNp63 transcriptionally regulates DGCR8. TAp63 -/- mice are highly tumor prone. These mice develop metastatic mammary adenocarcinomas, squamous cell carcinomas, and lung adenocarcinomas to distant sites including the liver, lungs, and brain. I found that TAp63 suppresses metastasis by transcriptionally activating Dicer. TAp63 and Dicer levels were very low or lost in high grade human tumors like mammary adenocarcinomas, squamous cell carcinomas, and lung adenocarcinomas. Expression of Dicer in these tumor cell lines reduced their invasiveness. Using ΔNp63 -/- mice, I found that ΔNp63 transcriptionally activates DGCR8, resulting in a miRNA profile that is critical to reprogram cells to pluripotency. Analysis of epidermal cells derived from ΔNp63 -/- mice revealed that these cells expressed markers of pluripotency, including Sox2, Oct 4 and Nanog; however, genome-wide analysis revealed a novel profile of genes that are common between ΔNp63 -/- epidermal cells and embryonic stem cells. I also found that mouse cells depleted of ΔNp63 form chimeric mice and teratomas in SCID mice, demonstrating that ΔNp63 deficient cells are pluripotent. Further, I found that restoration of DGCR8 in ΔNp63 -/- epidermal cells reduces their pluripotency and induces terminal differentiation. I also demonstrated that iMS (induced multipotent stem) cells could be generated using human keratinocytes by knockdown of ∆Np63 or DGCR8. Taken together, my work has placed p63 and its isoforms at a critical node in controlling miRNA biogenesis.
Resumo:
Non-melanoma skin cancer (NMSC) is the most frequently diagnosed form of cancer in United States. As in many other cancers, this slow growing malignancy manifests deregulated expression of apoptosis regulating proteins including bcl-2 family member proteins. To understand the role of apoptosis regulating protein in epidermal homeostasis and progression of NMSC, we investigated keratinocyte proliferation, differentiation and tumorigenesis in bcl-2 and bax null mice. The rate and the pattern of proliferation and spontaneous cell death were the same between the null and the control mice. Both bcl-2 and bax null epidermis showed decreased levels of cytokeratin 14 expression compared to the control littermates. Also, the gene knock out mice showed higher expression of cytokeratin 1 and loricrin in epidermis compared to the control mice. The apoptotic response to genotoxic agent, UV radiation (UVR), was assessed by counting sunburn cells. The bax null keratinocytes showed a resistance to apoptosis while bcl-2 null mice showed an increased susceptibility to cell death compared to the control mice. Moreover, we demonstrated an increase in tumor incidence in bax null mice compared to control littermates in the in vivo chemical carcinogenesis study. Next, we examined the tumor suppressor role of bax protein in NMSC by studying its participation in repair of UVR-mediated DNA lesions. In UVR treated primary keratinocytes from bax deficient mice, the level of CPD remaining was twice that of control cells at 48 hours. Similar results were obtained using embryonic fibroblasts from bax null and bax +/+ embryos, and also with a bax deficient prostate cancer cell line in which bax expression had been restored. However, the repair rate of 6-4 PP was unaffected by the absence of bax protein in all three of above mentioned cell types. In conclusion, bax protein may have a dual function in its role as tumor suppressor in NMSC. Bax may directly or indirectly facilitate DNA repair, or programmed cell death if DNA damage is too severe, thus, in either function, preserving genomic integrity following a genotoxic event. ^