4 resultados para K.7.m [The Computing Profession]

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tyrosine hydroxylase (TH), the initial and rate limiting enzyme in the catecholaminergic biosynthetic pathway, is phosphorylated on multiple serine residues by multiple protein kinases. Although it has been demonstrated that many protein kinases are capable of phosphorylating and activating TH in vitro, it is less clear which protein kinases participate in the physiological regulation of catecholamine synthesis in situ. These studies were designed to determine if protein kinase C (PK-C) plays such a regulatory role.^ Stimulation of intact bovine adrenal chromaffin cells with phorbol esters results in stimulation of catecholamine synthesis, tyrosine hydroxylase phosphorylation and activation. These responses are both time and concentration dependent, and are specific for those phorbol ester analogues which activate PK-C. RP-HPLC analysis of TH tryptic phosphopeptides indicate that PK-C phosphorylates TH on three putative sites. One of these (pepetide 6) is the same as that phosphorylated by both cAMP-dependent protein kinase (PK-A) and calcium/calmodulin-dependent protein kinase (CaM-K). However, two of these sites (peptides 4 and 7) are unique, and, to date, have not been shown to be phosphorylated by any other protein kinase. These peptides correspond to those which are phosphorylated with a slow time course in response to stimulation of chromaffin cells with the natural agonist acetylcholine. The activation of TH produced by PK-C is most closely correlated with the phosphorylation of peptide 6. But, as evident from pH profiles of tyrosine hydroxylase activity, phosphorylation of peptides 4 and 7 affect the expression of the activation produced by phosphorylation of peptide 6.^ These data support a role for PK-C in the control of TH activity, and suggest a two stage model for the physiological regulation of catecholamine synthesis by phosphorylation in response to cholinergic stimulation. An initial fast response, which appears to be mediated by CaM-K, and a slower, sustained response which appears to be mediated by PK-C. In addition, the multiple site phosphorylation of TH provides a mechanism whereby the regulation of catecholamine synthesis appears to be under the control of multiple protein kinases, and allows for the convergence of multiple, diverse physiological and biochemical signals. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mineralocorticoids (DOCA) are known to increase Na('+) absorption and K('+) secretion in the rabbit cortical collecting duct (CCD). However, the mechanism of regulation of the apical and basolateral cell membranes and tight junction ion conductive pathways (G('a), G('b), and G('tj), respectively) by mineralocorticoids are only partially understood. Using electrophysiological techniques and microelectrodes it was demonstrated that the apical cell membrane contained a dominant Ba('2+) sensitive K('+) conductive pathway, G(,K)('a), and an amiloride sensitive Na('+) conductive pathway, G(,Na)('a). The basolateral membrane contained a dominant Cl('-) conductive pathway, G(,Cl)('b), and a significant Ba('2+) sensitive K('+) conductive pathway, G(,K)('b). Upon elevating the mineralocorticoid levels of rabbits with intact adrenal glands it was found that V('te) was significantly increased after 1 day with a further increase after 13-16 days. These results indicated both primary and secondary effects of mineralocorticoid elevation. After 1 day of DOCA treatment, G(,Na)('a), I(,Na)('a) and I(,K)('a) increased by more than 2-fold and were maintained at high levels after 13-16 days of DOCA treatment. Secondary (chronic) effects of mineralocorticoids were evident after 4 days or more of DOCA treatment. These included a significant increase in G(,K)('a) from 4.0 to 10.2 mS.cm('-2) and a hyperpolarization of V('b) by -20 mV after 4 days of treatment. After 13-16 days of DOCA treatment V('b) remained hyperpolarized at -98.1 mV and G('tj) decreased from 5.6 to 4.2 mS.cm('-2). The hyperpolarization of V('b) was due to an increase in electrogenic Na('+) pump activity as the pump current, I(,act)('b), increased significantly from 35.7 to 195.2 (mu)A.cm('-2). Whereas net passive K('+) current across the basolateral membrane, I(,K)('b), was near zero in the control group of animals, i.e., K('+) near equilibrium, I(,K)('b) was approximately -40 (mu)A.cm('-2) in chronic DOCA treated animals. These results demonstrate that the initial effect of mineralocorticoid elevation is to increase G(,Na)('a). The ensuing depolarization of the apical membrane increases the driving force for K('+) exit into the lumen. Between 1 and 4 days of elevation, G(,K)('a) more than doubles in magnitude and at the same time the electrogenic activity of the Na('+) pump increases. This results in a hyperpolarization of V('b) which increases the driving force for K('+) uptake from the bath to the cell through a basolateral membrane conductive pathway. After 13-16 days G('tj) decreases thereby serving to maintain high electrochemical gradients across the epithelium. Therefore, the long term effects of mineralocorticoid elevation on the CCD appear to be adaptive mechanisms that serve to maintain high levels of K('+) secretion and Na('+) absorption. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The equilibrium constant (K(,c)) under physiological conditions (38(DEGREES)C, 0.25 M ionic strength (I), pH 7.0) for the glycine synthase (GS) reaction (E C 2.1.2.1.0) (Equation 1) has been determined. (UNFORMATTED TABLE FOLLOWS)^ 5,10-CH(,2)-H(,4)Folate NADH NH (,4)+ CO(,2) ^ K(,c) = Eq. 1^ H(,4)Folate NAD('+) GLY ^(TABLE ENDS)^ The enzymatic instability of the GS enzyme complex itself has made it necessary to determine the overall K(,c) from the product of constants for the partial reactions of GS determined separately under the same conditions. The partial reactions are the H(,4)Folate-formaldehyde (CH(,2)(OH)(,2)) condensation reaction (Reaction 1) the K(,c) for which has been reported by this laboratory (3.0 x 10('4)), the lipoate (LipS(,2)) dehydrogenase reaction (LipDH) (Reaction 2) and the Gly-Lip^ decarboxylase reaction (Reaction 3) forming reduced lipoate (Lip(SH)(,2)), NH(,4)('+), CO(,2) and CH(,2)(OH)(,2.) (UNFORMATTED TABLE FOLLOWS)(,)^ H(,4)Fote + CH(,2)(OH)(,2) 5,10-CH(,2)-H(,4)Folate (1)^ Lip(SH)(,2) + NAD('+) LipS(,2) + NADH + H('+) (2)^ H('+) + Gly + LipS(,2) Lip(SH)(,2) + NH(,4)('+) CO(,2) + CH(,2)(OH)(,2) (3)^(TABLE ENDS)^ In this work the K(,c) for Reactions 2 and 3 are reported.^ The K(,c)' for the LipDH reaction described by other authors was reported with unexplainable conclusions regarding the pH depend- ence for the reaction. These conclusions would imply otherwise unexpected acid dissociation constants for reduced and oxidized lipoate. The pK(,a)',s for these compounds have been determined to resolve discrepancy. The conclusions are as follows: (1) The K(,c) for the LipDH reaction is 2.08 x 10('-8); (2) The pK(,a)',s for Lip(SH)(,2) are 4.77(-COOH), 9.91(-SH), 11.59(-SH); for LipS(,2) the carboxyl pK(,a)' is 4.77; (3) Contrary to previous literature, the log K(,c)' for the LipDH reaction is a linear function of the pH, a conclusion supported by the values for the dissociation constants.^ The K(,c) for Reaction 3 is the product of constants for Reactions 4-7. (UNFORMATTED TABLE FOLLOWS)^ LipSHSCH(,2)OH + H(,2)O Lip(SH)(,2) + CH(,2)(OH)(,2) (4)^ H(,2)O + LipSHSCH(,2)NH(,3)('+) LipSHSCH(,2)OH + NH(,4)('+) (5)^ LipSHSCH(,2)NH(,2) + H('+) LipSHSCH(,2)NH(,3)('+) (6)^ Gly + LipS(,2) LipSHSCH(,2)NH(,2) + CO(,2) (7)^(TABLE ENDS)^ Reactions 4-6 are non-enzymatic reactions whose constants were determined spectrophotometrically. Reaction 7 was catalyzed by the partially purified P-protein of GS with equilibrium approached from both directions. The value for K(,c) for this reaction is 8.15 x 10('-3). The combined K(,c) for Reactions 4-7 or Reaction 3 is 2.4 M.^ The overall K(,c) for the GS reaction determined by combination of values for Reactions 1-3 is 1.56 x 10('-3). ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. EAP programs for airline pilots in companies with a well developed recovery management program are known to reduce pilot absenteeism following treatment. Given the costs and safety consequences to society, it is important to identify pilots who may be experiencing an AOD disorder to get them into treatment. ^ Hypotheses. This study investigated the predictive power of workplace absenteeism in identifying alcohol or drug disorders (AOD). The first hypothesis was that higher absenteeism in a 12-month period is associated with higher risk that an employee is experiencing AOD. The second hypothesis was that AOD treatment would reduce subsequent absence rates and the costs of replacing pilots on missed flights. ^ Methods. A case control design using eight years (time period) of monthly archival absence data (53,000 pay records) was conducted with a sample of (N = 76) employees having an AOD diagnosis (cases) matched 1:4 with (N = 304) non-diagnosed employees (controls) of the same profession and company (male commercial airline pilots). Cases and controls were matched on the variables age, rank and date of hire. Absence rate was defined as sick time hours used over the sum of the minimum guarantee pay hours annualized using the months the pilot worked for the year. Conditional logistic regression was used to determine if absence predicts employees experiencing an AOD disorder, starting 3 years prior to the cases receiving the AOD diagnosis. A repeated measures ANOVA, t tests and rate ratios (with 95% confidence intervals) were conducted to determine differences between cases and controls in absence usage for 3 years pre and 5 years post treatment. Mean replacement costs were calculated for sick leave usage 3 years pre and 5 years post treatment to estimate the cost of sick leave from the perspective of the company. ^ Results. Sick leave, as measured by absence rate, predicted the risk of being diagnosed with an AOD disorder (OR 1.10, 95% CI = 1.06, 1.15) during the 12 months prior to receiving the diagnosis. Mean absence rates for diagnosed employees increased over the three years before treatment, particularly in the year before treatment, whereas the controls’ did not (three years, x = 6.80 vs. 5.52; two years, x = 7.81 vs. 6.30, and one year, x = 11.00cases vs. 5.51controls. In the first year post treatment compared to the year prior to treatment, rate ratios indicated a significant (60%) post treatment reduction in absence rates (OR = 0.40, CI = 0.28, 0.57). Absence rates for cases remained lower than controls for the first three years after completion of treatment. Upon discharge from the FAA and company’s three year AOD monitoring program, cases absence rates increased slightly during the fourth year (controls, x = 0.09, SD = 0.14, cases, x = 0.12, SD = 0.21). However, the following year, their mean absence rates were again below those of the controls (controls, x = 0.08, SD = 0.12, cases, x¯ = 0.06, SD = 0.07). Significant reductions in costs associated with replacing pilots calling in sick, were found to be 60% less, between the year of diagnosis for the cases and the first year after returning to work. A reduction in replacement costs continued over the next two years for the treated employees. ^ Conclusions. This research demonstrates the potential for workplace absences as an active organizational surveillance mechanism to assist managers and supervisors in identifying employees who may be experiencing or at risk of experiencing an alcohol/drug disorder. Currently, many workplaces use only performance problems and ignore the employees absence record. A referral to an EAP or alcohol/drug evaluation based on the employees absence/sick leave record as incorporated into company policy can provide another useful indicator that may also carry less stigma, thus reducing barriers to seeking help. This research also confirms two conclusions heretofore based only on cross-sectional studies: (1) higher absence rates are associated with employees experiencing an AOD disorder; (2) treatment is associated with lower costs for replacing absent pilots. Due to the uniqueness of the employee population studied (commercial airline pilots) and the organizational documentation of absence, the generalizability of this study to other professions and occupations should be considered limited. ^ Transition to Practice. The odds ratios for the relationship between absence rates and an AOD diagnosis are precise; the OR for year of diagnosis indicates the likelihood of being diagnosed increases 10% for every hour change in sick leave taken. In practice, however, a pilot uses approximately 20 hours of sick leave for one trip, because the replacement will have to be paid the guaranteed minimum of 20 hour. Thus, the rate based on hourly changes is precise but not practical. ^ To provide the organization with practical recommendations the yearly mean absence rates were used. A pilot flies on average, 90 hours a month, 1080 annually. Cases used almost twice the mean rate of sick time the year prior to diagnosis (T-1) compared to controls (cases, x = .11, controls, x = .06). Cases are expected to use on average 119 hours annually (total annual hours*mean annual absence rate), while controls will use 60 hours. The cases’ 60 hours could translate to 3 trips of 20 hours each. Management could use a standard of 80 hours or more of sick time claimed in a year as the threshold for unacceptable absence, a 25% increase over the controls (a cost to the company of approximately of $4000). At the 80-hour mark, the Chief Pilot would be able to call the pilot in for a routine check as to the nature of the pilots excessive absence. This management action would be based on a company standard, rather than a behavioral or performance issue. Using absence data in this fashion would make it an active surveillance mechanism. ^