3 resultados para Israeli High Court of Justice

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochrome P450 (P450) is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP) in brain and liver, relatively more alpha-hydroxy alprazolam (alpha-OHALP) is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both alpha-OHALP and 4-hydroxy alprazolam (4-OHALP) while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of alpha-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of alpha-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochrome P450 (P450) is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP) in brain and liver, relatively more alpha-hydroxy alprazolam (alpha-OHALP) is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both alpha-OHALP and 4-hydroxy alprazolam (4-OHALP) while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of alpha-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of alpha-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Center for Disease Control and Prevention (CDC) estimates that more than 2 million patients annually acquire an infection while hospitalized in U.S. hospitals for other health problems, and that 88,000 die as a direct or indirect result of these infections. Infection with Clostridium difficile is the most important common cause of health care associated infectious diarrhea in industrialized countries. The purpose of this study was to explore the cost of current treatment practice of beginning empiric metronidazole treatment for hospitalized patients with diarrhea prior to identification of an infectious agent. The records of 70 hospitalized patients were retrospectively analyzed to determine the pharmacologic treatment, laboratory testing, and radiographic studies ordered and the median cost for each of these was determined. All patients in the study were tested for C. difficile and concurrently started on empiric metronidazole. The median direct cost for metronidazole was $7.25 per patient (95% CI 5.00, 12.721). The median direct cost for laboratory charges was $468.00 (95% CI 339.26, 552.58) and for radiology the median direct cost was $970.00 (95% CI 738.00, 3406.91). Indirect costs, which are far greater than direct costs, were not studied. At St. Luke's, if every hospitalized patient with diarrhea was empirically treated with metronidazole at a median cost of $7.25, the annual direct cost is estimated to be over $9,000.00 plus uncalculated indirect costs. In the U.S., the estimated annual direct cost may be as much as $21,750,000.00, plus indirect costs. ^ An unexpected and significant finding of this study was the inconsistency in testing and treatment of patients with health care associated diarrhea. A best-practice model for C. difficile testing and treatment was not found in the literature review. In addition to the cost savings gained by not routinely beginning empiric treatment with metronidazole, significant savings and improvement in patient care may result from a more consistent approach to the diagnosis and treatment of all patients with health care associated diarrhea. A decision tree model for C. difficile testing and treatment is proposed, but further research is needed to evaluate the decision arms before a validated best practice model can be proposed. ^