3 resultados para Intestinal tract
em DigitalCommons@The Texas Medical Center
Resumo:
Enterococci are normal flora in the human intestinal tract, and also one of the leading causes of nosocomial infections, with most of the clinical isolates being Enterococcus faecalis and Enterococcus faecium. Despite extensive studies on the antibiotic resistance, the pathogenicity of enterococci is not well understood, especially for E. faecium. To identify potential virulence factors based on their antigenicity during infection, E. faecium genomic libraries were constructed and screened using sera from patients with E. faecium endocarditis. ^ As one of my projects, total polysaccharides were extracted from E. faecalis OG1RF and from two epa mutants constructed previously, TX5179 and TX5180, and western blots with patient sera showed that an immuno-reactive polysaccharide present in wild type OG1RF was not produced by either of the two epa mutants. The epa mutants were more sensitive to ethanol stress, neutrophil killing and neutrophil phagocytosis than the wild type OG1RF. ^ Expression of virulence factors is commonly regulated by two component systems. A BLAST search was performed to identify potential two component systems in the E. faecalis V583 genome database using PhoP/PhoS as query sequences, and 11 gene pairs were identified, seven of which were disrupted in E. faecalis OGIRF. ^ Finally, an in vitro translocation model was established for enterococci. E. faecalis strain OG1RF and E. faecium strain DO were shown to be able to translocate across a T84 monolayer, while E. coli strain DH5α and E. faecalis strain E1 could not. ^ In conclusion, several E. faecium antigens expressed in infection (whose antibodies present in sera from patients with E. faecium endocarditis) were identified, two of which, SagA and GlyA, were characterized and suggested to be involved in cell wall metabolism. E. faecalis epa gene cluster (involving in polysaccharide biosynthesis and known to be involved in virulence of E. faecalis in mice) was shown to be involved in hindering neutrophil killing. Several two-component systems were identified in E. faecalis and two of which, EtaRS and EtbRS, were involved in E. faecalis virulence in a mouse peritonitis model.^
Resumo:
It is generally believed that 1,25(OH)2D3, bound to its receptor (VDR) contributes to calcium homeostasis by regulating active calcium absorption in the proximal small intestine. However, studying patients with hereditary vitamin D-resistant rickets (HVDRR) provided investigators with a better understanding of VDR's role in calcium homeostasis. HVDRR patients have inactivating mutations in the VDR, and as a consequence they develop hypocalcemia, hyperparathyroidism and severe rickets. However, these phenotypes can be corrected if the patients are given IV infusions of calcium or dietary calcium. This raises the question of what is the physiological significance of VDR-regulated active calcium absorption if calcium homeostasis can be restored independently of the VDR. ^ In order to distinguish the contribution of VDR in the proximal small intestine to overall calcium homeostasis, I generated transgenic mice expressing the human VDR (hVDR) exclusively in the proximal small intestine of mVDR-/- mice by using an hVDR-expressing transgene driven by the duodenal-specific adenosine deaminase enhancer (hVDR+/mVDR-/-). hVDR+/mVDR-/- mice expressed transcriptionally active hVDR only in the proximal small intestine and responded to 1,25(OH)2D3 by up-regulating expression of TRPV6 and calbindin D9K, genes involved in calcium absorption. Furthermore, ligated duodenal loop assays determined that calcium absorption in hVDR+/mVDR-/- mice was as responsive to 1,25(OH)2D3 as in WT mice. Despite having a functional hVDR in the proximal small intestine, hVDR+/mVDR-/- mice were hypocalcemic, had hyperparathyroidism, and were rachitic when fed a normal rodent diet at weaning, as were the mVDR-/- mice. However, when fed a high calcium, phosphorus, and lactose diet (rescue diet), the hVDR+/mVDR-/- mice responded more effectively than the mVDR-/- mice by down-regulation of parathyroid hormone production and by a greater increase in bone mineralization. Furthermore, when three-month-old rachitic mice were fed a rescue diet for 3 weeks, serum calcium and bone mineral content were normalized in hVDR+/mVDR-/- mice, but not in mVDR-/- mice. ^ In conclusion, hVDR expression enabled young mice to better use the rescue diet than mVDR-/- mice. Expression of transgenic hVDR also protected the ability of older mice to respond to the rescue diet despite the absence of the VDR elsewhere in the intestinal tract. I propose that because hVDR+/mVDR-/- mice responded better than mVDR-/- mice to the rescue diet, it is likely that VDR expression in the proximal small intestine is necessary in nutritional (insufficient dietary calcium) and physiological (age) conditions when passive calcium absorption is inadequate. ^
Resumo:
Colorectal cancer is a complex disease that is thought to arise when cells accumulate mutations that allow for uncontrolled growth. There are several recognized mechanisms for generating such mutations in sporadic colon cancer; one of which is chromosomal instability (CIN). One hypothesized driver of CIN in cancer is the improper repair of dysfunctional telomeres. Telomeres comprise the linear ends of chromosomes and play a dual role in cancer. Its length is maintained by the ribonucleoprotein, telomerase, which is not a normally expressed in somatic cells and as cells divide, telomeres continuously shorten. Critically shortened telomeres are considered dysfunctional as they are recognized as sites of DNA damage and cells respond by entering into replicative senescence or apoptosis, a process that is p53-dependent and the mechanism for telomere-induced tumor suppression. Loss of this checkpoint and improper repair of dysfunctional telomeres can initiate a cycle of fusion, bridge and breakage that can lead to chromosomal changes and genomic instability, a process that can lead to transformation of normal cells to cancer cells. Mouse models of telomere dysfunction are currently based on knocking out the telomerase protein or RNA component; however, the naturally long telomeres of mice require multiple generational crosses of telomerase null mice to achieve critically short telomeres. Shelterin is a complex of six core proteins that bind to telomeres specifically. Pot1a is a highly conserved member of this complex that specifically binds to the telomeric single-stranded 3’ G-rich overhang. Previous work in our lab has shown that Pot1a is essential for chromosomal end protection as deletion of Pot1a in murine embryonic fibroblasts (MEFs) leads to open telomere ends that initiate a DNA damage response mediated by ATR, resulting in p53-dependent cellular senescence. Loss of Pot1a in the background of p53 deficiency results in increased aberrant homologous recombination at telomeres and elevated genomic instability, which allows Pot1a-/-, p53-/- MEFs to form tumors when injected into SCID mice. These phenotypes are similar to those seen in cells with critically shortened telomeres. In this work, we created a mouse model of telomere ysfunction in the gastrointestinal tract through the conditional deletion of Pot1a that recapitulates the microscopic features seen in severe telomere attrition. Combined intestinal loss of Pot1a and p53 lead to formation of invasive adenocarcinomas in the small and large intestines. The tumors formed with long latency, low multiplicity and had complex genomes due to chromosomal instability, features similar to those seen in sporadic human colorectal cancers. Taken together, we have developed a novel mouse model of intestinal tumorigenesis based on genomic instability driven by telomere dysfunction.