4 resultados para Interval time-varying delay
em DigitalCommons@The Texas Medical Center
Resumo:
Health-related quality of life (HRQOL) is an important measure of the effects of chronic liver disease in affected patients that helps guide interventions to improve well-being. However, the relationship between HRQOL and survival in liver transplant candidates remains unclear. We examined whether the Physical Component Summary (PCS) and Mental Component Summary (MCS) scores from the Short Form 36 (SF-36) Health Survey were associated with survival in liver transplant candidates. We administered the SF-36 questionnaire (version 2.0) to patients in the Pulmonary Vascular Complications of Liver Disease study, a multicenter prospective cohort of patients evaluated for liver transplantation in 7 academic centers in the United States between 2003 and 2006. Cox proportional hazards models were used with death as the primary outcome and adjustment for liver transplantation as a time-varying covariate. The mean age of the 252 participants was 54 +/- 10 years, 64% were male, and 94% were white. During the 422 person years of follow-up, 147 patients (58%) were listed, 75 patients (30%) underwent transplantation, 49 patients (19%) died, and 3 patients were lost to follow-up. Lower baseline PCS scores were associated with an increased mortality rate despite adjustments for age, gender, Model for End-Stage Liver Disease score, and liver transplantation (P for the trend = 0.0001). The MCS score was not associated with mortality (P for the trend = 0.53). In conclusion, PCS significantly predicts survival in liver transplant candidates, and interventions directed toward improving the physical status may be helpful in improving outcomes in liver transplant candidates.
Resumo:
Recent treatment planning studies have demonstrated the use of physiologic images in radiation therapy treatment planning to identify regions for functional avoidance. This image-guided radiotherapy (IGRT) strategy may reduce the injury and/or functional loss following thoracic radiotherapy. 4D computed tomography (CT), developed for radiotherapy treatment planning, is a relatively new imaging technique that allows the acquisition of a time-varying sequence of 3D CT images of the patient's lungs through the respiratory cycle. Guerrero et al. developed a method to calculate ventilation imaging from 4D CT, which is potentially better suited and more broadly available for IGRT than the current standard imaging methods. The key to extracting function information from 4D CT is the construction of a volumetric deformation field that accurately tracks the motion of the patient's lungs during the respiratory cycle. The spatial accuracy of the displacement field directly impacts the ventilation images; higher spatial registration accuracy will result in less ventilation image artifacts and physiologic inaccuracies. Presently, a consistent methodology for spatial accuracy evaluation of the DIR transformation is lacking. Evaluation of the 4D CT-derived ventilation images will be performed to assess correlation with global measurements of lung ventilation, as well as regional correlation of the distribution of ventilation with the current clinical standard SPECT. This requires a novel framework for both the detailed assessment of an image registration algorithm's performance characteristics as well as quality assurance for spatial accuracy assessment in routine application. Finally, we hypothesize that hypo-ventilated regions, identified on 4D CT ventilation images, will correlate with hypo-perfused regions in lung cancer patients who have obstructive lesions. A prospective imaging trial of patients with locally advanced non-small-cell lung cancer will allow this hypothesis to be tested. These advances are intended to contribute to the validation and clinical implementation of CT-based ventilation imaging in prospective clinical trials, in which the impact of this imaging method on patient outcomes may be tested.
Resumo:
The problem of analyzing data with updated measurements in the time-dependent proportional hazards model arises frequently in practice. One available option is to reduce the number of intervals (or updated measurements) to be included in the Cox regression model. We empirically investigated the bias of the estimator of the time-dependent covariate while varying the effect of failure rate, sample size, true values of the parameters and the number of intervals. We also evaluated how often a time-dependent covariate needs to be collected and assessed the effect of sample size and failure rate on the power of testing a time-dependent effect.^ A time-dependent proportional hazards model with two binary covariates was considered. The time axis was partitioned into k intervals. The baseline hazard was assumed to be 1 so that the failure times were exponentially distributed in the ith interval. A type II censoring model was adopted to characterize the failure rate. The factors of interest were sample size (500, 1000), type II censoring with failure rates of 0.05, 0.10, and 0.20, and three values for each of the non-time-dependent and time-dependent covariates (1/4,1/2,3/4).^ The mean of the bias of the estimator of the coefficient of the time-dependent covariate decreased as sample size and number of intervals increased whereas the mean of the bias increased as failure rate and true values of the covariates increased. The mean of the bias of the estimator of the coefficient was smallest when all of the updated measurements were used in the model compared with two models that used selected measurements of the time-dependent covariate. For the model that included all the measurements, the coverage rates of the estimator of the coefficient of the time-dependent covariate was in most cases 90% or more except when the failure rate was high (0.20). The power associated with testing a time-dependent effect was highest when all of the measurements of the time-dependent covariate were used. An example from the Systolic Hypertension in the Elderly Program Cooperative Research Group is presented. ^
Resumo:
Of the large clinical trials evaluating screening mammography efficacy, none included women ages 75 and older. Recommendations on an upper age limit at which to discontinue screening are based on indirect evidence and are not consistent. Screening mammography is evaluated using observational data from the SEER-Medicare linked database. Measuring the benefit of screening mammography is difficult due to the impact of lead-time bias, length bias and over-detection. The underlying conceptual model divides the disease into two stages: pre-clinical (T0) and symptomatic (T1) breast cancer. Treating the time in these phases as a pair of dependent bivariate observations, (t0,t1), estimates are derived to describe the distribution of this random vector. To quantify the effect of screening mammography, statistical inference is made about the mammography parameters that correspond to the marginal distribution of the symptomatic phase duration (T1). This shows the hazard ratio of death from breast cancer comparing women with screen-detected tumors to those detected at their symptom onset is 0.36 (0.30, 0.42), indicating a benefit among the screen-detected cases. ^