4 resultados para International Body Project

em DigitalCommons@The Texas Medical Center


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Linkage and association studies are major analytical tools to search for susceptibility genes for complex diseases. With the availability of large collection of single nucleotide polymorphisms (SNPs) and the rapid progresses for high throughput genotyping technologies, together with the ambitious goals of the International HapMap Project, genetic markers covering the whole genome will be available for genome-wide linkage and association studies. In order not to inflate the type I error rate in performing genome-wide linkage and association studies, multiple adjustment for the significant level for each independent linkage and/or association test is required, and this has led to the suggestion of genome-wide significant cut-off as low as 5 × 10 −7. Almost no linkage and/or association study can meet such a stringent threshold by the standard statistical methods. Developing new statistics with high power is urgently needed to tackle this problem. This dissertation proposes and explores a class of novel test statistics that can be used in both population-based and family-based genetic data by employing a completely new strategy, which uses nonlinear transformation of the sample means to construct test statistics for linkage and association studies. Extensive simulation studies are used to illustrate the properties of the nonlinear test statistics. Power calculations are performed using both analytical and empirical methods. Finally, real data sets are analyzed with the nonlinear test statistics. Results show that the nonlinear test statistics have correct type I error rates, and most of the studied nonlinear test statistics have higher power than the standard chi-square test. This dissertation introduces a new idea to design novel test statistics with high power and might open new ways to mapping susceptibility genes for complex diseases. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A variety of studies indicate that the process of athrosclerosis begins in childhood. There was limited information on the association of the changes in anthropometric variables to blood lipids in school age children and adolescents. Previous longitudinal studies of children typically with insufficient frequency of observation could not provide sound inference on the dynamics of change in blood lipids. The aims of this analysis are (1) to document the sex- and ethnic-specific trajectory and velocity curves of blood lipids (TC, LDL-C, HDL-C and TG); (2) to evaluate the relationship of changes in anthropometric variables, such as height, weight and BMI, to blood lipids from age 8 to 18 years. ^ Project HeartBeat! is a longitudinal study designed to examine the patterns of serial change in major cardiovascular risk factors. Cohort of three different age levels, 8, 11 and 14 years at baseline, with a total of 678 participants were enrolled. Each member of these cohorts was examined three times per year for up to four years. ^ Sex- and ethnic-specific trajectory and velocity curves of blood lipids; demonstrated the complex and polyphasic changes in TC, LDL-C, HDL-C and TG longitudinally. The trajectory curves of TC, LDL-C and HDL-C with age showed curvilinear patterns of change. The velocity change in TC, HDL-C and LDL-C showed U-shaped curves for non-Blacks, and nearly linear lines in velocity of TG for both Blacks and non-Blacks. ^ The relationship of changes in anthropometric variables to blood lipids was evaulated by adding height, weight, or BMI and associated interaction terms separately to the basic age-sex models. Height or height gain had a significant negative association with changes in TC, LDL-C and HDL-C. Weight or BMI gain showed positive associations with TC, LDL-C and TC, and a negative relationship with HDL-C. ^ Dynamic changes of blood lipids in school age children and adolescents observed from this analysis suggested that using fixed screening criteria under the current NCEP guidelines for all ages 2–19 may not be appropriate for this age group. The association of increasing BMI or weight to an adverse blood lipid profile found in this analysis also indicated that weight or BMI monitoring could be a future intervention to be implemented in the pediatric population. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Left ventricular mass (LVM) is a strong predictor of cardiovascular disease (CVD) in adults. However, normal growth of LVM in healthy children is not well understood, and previous results on independent effects of body size and body fatness on LVM have been inconsistent. The purpose of this study was (1) to establish the normal growth curve of LVM from age 8 to age 18, and evaluate the determinants of change in LVM with age, and (2) to assess the independent effects of body size and body fatness on LVM.^ In Project HeartBeat!, 678 healthy children aged 8, 11 and 14 years at baseline were enrolled and examined at 4-monthly intervals for up to 4 years. A synthetic cohort with continuous observations from age 8 to 18 years was constructed. A total of 4608 LVM measurements was made from M-mode echocardiography. The multilevel linear model was used for analysis.^ Sex-specific trajectories of normal growth of LVM from age 8 to 18 was displayed. On average, LVM was 15 g higher in males than females. Average LVM increased linearly in males from 78 g at age 8 to 145 g at age 18. For females, the trajectory was curvilinear, nearly constant after age 14. No significant racial differences were found. After adjustment for the effects of body size and body fatness, average LVM decreased slightly from age 8 to 18, and sex differences in changes of LVM remained constant.^ The impact of body size on LVM was examined by adding to a basic LVM-sex-age model one of 9 body size indicators. The impact of body fatness was tested by further introducing into each of the 9 LVM models (with one or another of the body size indicators) one of 4 body fatness indicators, yielding 36 models with different body size and body fatness combinations. The results indicated that effects of body size on LVM can be distinguished between fat-free body mass and fat body mass, both being independent, positive predictors. The former is the stronger determinant. When a non-fat-free body size indicator is used as predictor, the estimated residual effect of body fatness on LVM becomes negative. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blood cholesterol and blood pressure development in childhood and adolescence have important impact on the future adult level of cholesterol and blood pressure, and on increased risk of cardiovascular diseases. The U.S. has higher mortality rates of coronary heart diseases than Japan. A longitudinal comparison in children of risk factor development in the two countries provides more understanding about the causes of cardiovascular disease and its prevention. Such comparisons have not been reported in the past. ^ In Project HeartBeat!, 506 non-Hispanic white, 136 black and 369 Japanese children participated in the study in the U.S. and Japan from 1991 to 1995. A synthetic cohort of ages 8 to 18 years was composed by three cohorts with starting ages at 8, 11, and 14. A multilevel regression model was used for data analysis. ^ The study revealed that the Japanese children had significantly higher slopes of mean total cholesterol (TC) and high density lipoprotein (HDL) cholesterol levels than the U.S. children after adjusting for age and sex. The mean TC level of Japanese children was not significantly different from white and black children. The mean HDL level of Japanese children was significantly higher than white and black children after adjusting for age and sex. The ratio of HDL/TC in Japanese children was significantly higher than in U.S. whites, but not significantly different from the black children. The Japanese group had significantly lower mean diastolic blood pressure phase IV (DBP4) and phase V (DBP5) than the two U.S. groups. The Japanese group also showed significantly higher slopes in systolic blood pressure, DBP5 and DBP4 during the study period than both U.S. groups. The differences were independent from height and body mass index. ^ The study provided the first longitudinal comparison of blood cholesterol and blood pressure between the U.S. and Japanese children and adolescents. It revealed the dynamic process of these factors in the three ethnic groups. ^