2 resultados para Internal promoters
em DigitalCommons@The Texas Medical Center
Resumo:
People often use tools to search for information. In order to improve the quality of an information search, it is important to understand how internal information, which is stored in user’s mind, and external information, represented by the interface of tools interact with each other. How information is distributed between internal and external representations significantly affects information search performance. However, few studies have examined the relationship between types of interface and types of search task in the context of information search. For a distributed information search task, how data are distributed, represented, and formatted significantly affects the user search performance in terms of response time and accuracy. Guided by UFuRT (User, Function, Representation, Task), a human-centered process, I propose a search model, task taxonomy. The model defines its relationship with other existing information models. The taxonomy clarifies the legitimate operations for each type of search task of relation data. Based on the model and taxonomy, I have also developed prototypes of interface for the search tasks of relational data. These prototypes were used for experiments. The experiments described in this study are of a within-subject design with a sample of 24 participants recruited from the graduate schools located in the Texas Medical Center. Participants performed one-dimensional nominal search tasks over nominal, ordinal, and ratio displays, and searched one-dimensional nominal, ordinal, interval, and ratio tasks over table and graph displays. Participants also performed the same task and display combination for twodimensional searches. Distributed cognition theory has been adopted as a theoretical framework for analyzing and predicting the search performance of relational data. It has been shown that the representation dimensions and data scales, as well as the search task types, are main factors in determining search efficiency and effectiveness. In particular, the more external representations used, the better search task performance, and the results suggest the ideal search performance occurs when the question type and corresponding data scale representation match. The implications of the study lie in contributing to the effective design of search interface for relational data, especially laboratory results, which are often used in healthcare activities.
Resumo:
Repression of many tumor suppressor genes (TSGs) in cancer is mediated by aberrantly increased DNA methylation levels at promoter CpG islands (CGI). About one-fourth of empirically defined human promoters are surrounded by or contain clustered repetitive elements. It was previously observed that a sharp transition of methylation occurs between highly methylated repetitive elements (SINE or LINE) and unmethylated CGI-promoters (e.g. P16, VHL, CDH and RIL) in normal tissues. The functions that lead to increased CGI methylation in cancer remain poorly understood. We propose that CGI-promoters contain cis-elements for triggering de novo DNA methylation. In the first part of our project, we established a site-specific integration system with enforced local transcriptional repression in colorectal cancer cells and monitored the occurrence of de novo DNA methylation in exogenous fragments containing a CGI-promoter and repetitive elements. Initial de novo methylation was seeded at specific CG sites in a repetitive element, and accelerated by persistent binding of a KRAB-containing transcriptional repressor. Furthermore, additional repetitive elements (LINE and SINE) located adjacent to the promoter could confer DNA methylation spreading into the CGI particularly in the setting of KRAB-factor binding. However, a repressive chromatin alone was not sufficient to initiate DNA methylation, which required specific DNA sequences and was integration-site (and/or cell-line) specific. In addition, all the methylation observed showed slow and gradual accumulation over several months of culture. Overall, these results demonstrate a requirement for specific DNA sequences to trigger de novo DNA methylation, and repetitive elements as cis-regulatory factors to cooperate with strengthened transcriptional repression in promoting methylation spreading. In the second part, we re-introduced disrupted DNMT3B or DNMT1 into HCT116 DKO cells and mapped the remethylation pattern through a profiling method (DREAM). Moderate remethylation occurred when DNMT3B was re-expressed with a preference toward non-CGI and non-promoter regions. Hence, there exists a set of genomic regions with priority to be targets for DNMT3B in somatic cells.