6 resultados para Internal covariates
em DigitalCommons@The Texas Medical Center
Resumo:
People often use tools to search for information. In order to improve the quality of an information search, it is important to understand how internal information, which is stored in user’s mind, and external information, represented by the interface of tools interact with each other. How information is distributed between internal and external representations significantly affects information search performance. However, few studies have examined the relationship between types of interface and types of search task in the context of information search. For a distributed information search task, how data are distributed, represented, and formatted significantly affects the user search performance in terms of response time and accuracy. Guided by UFuRT (User, Function, Representation, Task), a human-centered process, I propose a search model, task taxonomy. The model defines its relationship with other existing information models. The taxonomy clarifies the legitimate operations for each type of search task of relation data. Based on the model and taxonomy, I have also developed prototypes of interface for the search tasks of relational data. These prototypes were used for experiments. The experiments described in this study are of a within-subject design with a sample of 24 participants recruited from the graduate schools located in the Texas Medical Center. Participants performed one-dimensional nominal search tasks over nominal, ordinal, and ratio displays, and searched one-dimensional nominal, ordinal, interval, and ratio tasks over table and graph displays. Participants also performed the same task and display combination for twodimensional searches. Distributed cognition theory has been adopted as a theoretical framework for analyzing and predicting the search performance of relational data. It has been shown that the representation dimensions and data scales, as well as the search task types, are main factors in determining search efficiency and effectiveness. In particular, the more external representations used, the better search task performance, and the results suggest the ideal search performance occurs when the question type and corresponding data scale representation match. The implications of the study lie in contributing to the effective design of search interface for relational data, especially laboratory results, which are often used in healthcare activities.
Resumo:
Interaction effect is an important scientific interest for many areas of research. Common approach for investigating the interaction effect of two continuous covariates on a response variable is through a cross-product term in multiple linear regression. In epidemiological studies, the two-way analysis of variance (ANOVA) type of method has also been utilized to examine the interaction effect by replacing the continuous covariates with their discretized levels. However, the implications of model assumptions of either approach have not been examined and the statistical validation has only focused on the general method, not specifically for the interaction effect.^ In this dissertation, we investigated the validity of both approaches based on the mathematical assumptions for non-skewed data. We showed that linear regression may not be an appropriate model when the interaction effect exists because it implies a highly skewed distribution for the response variable. We also showed that the normality and constant variance assumptions required by ANOVA are not satisfied in the model where the continuous covariates are replaced with their discretized levels. Therefore, naïve application of ANOVA method may lead to an incorrect conclusion. ^ Given the problems identified above, we proposed a novel method modifying from the traditional ANOVA approach to rigorously evaluate the interaction effect. The analytical expression of the interaction effect was derived based on the conditional distribution of the response variable given the discretized continuous covariates. A testing procedure that combines the p-values from each level of the discretized covariates was developed to test the overall significance of the interaction effect. According to the simulation study, the proposed method is more powerful then the least squares regression and the ANOVA method in detecting the interaction effect when data comes from a trivariate normal distribution. The proposed method was applied to a dataset from the National Institute of Neurological Disorders and Stroke (NINDS) tissue plasminogen activator (t-PA) stroke trial, and baseline age-by-weight interaction effect was found significant in predicting the change from baseline in NIHSS at Month-3 among patients received t-PA therapy.^
Resumo:
A general model for the illness-death stochastic process with covariates has been developed for the analysis of survival data. This model incorporates important baseline and time-dependent covariates to make proper adjustment for the transition probabilities and survival probabilities. The follow-up period is subdivided into small intervals and a constant hazard is assumed for each interval. An approximation formula is derived to estimate the transition parameters when the exact transition time is unknown.^ The method developed is illustrated by using data from a study on the prevention of the recurrence of a myocardial infarction and subsequent mortality, the Beta-Blocker Heart Attack Trial (BHAT). This method provides an analytical approach which simultaneously includes provision for both fatal and nonfatal events in the model. According to this analysis, the effectiveness of the treatment can be compared between the Placebo and Propranolol treatment groups with respect to fatal and nonfatal events. ^
Resumo:
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is an obvious carcinogen for lung cancer. Since CBMN (Cytokinesis-blocked micronucleus) has been found to be extremely sensitive to NNK-induced genetic damage, it is a potential important factor to predict the lung cancer risk. However, the association between lung cancer and NNK-induced genetic damage measured by CBMN assay has not been rigorously examined. ^ This research develops a methodology to model the chromosomal changes under NNK-induced genetic damage in a logistic regression framework in order to predict the occurrence of lung cancer. Since these chromosomal changes were usually not observed very long due to laboratory cost and time, a resampling technique was applied to generate the Markov chain of the normal and the damaged cell for each individual. A joint likelihood between the resampled Markov chains and the logistic regression model including transition probabilities of this chain as covariates was established. The Maximum likelihood estimation was applied to carry on the statistical test for comparison. The ability of this approach to increase discriminating power to predict lung cancer was compared to a baseline "non-genetic" model. ^ Our method offered an option to understand the association between the dynamic cell information and lung cancer. Our study indicated the extent of DNA damage/non-damage using the CBMN assay provides critical information that impacts public health studies of lung cancer risk. This novel statistical method could simultaneously estimate the process of DNA damage/non-damage and its relationship with lung cancer for each individual.^
Resumo:
It is well known that an identification problem exists in the analysis of age-period-cohort data because of the relationship among the three factors (date of birth + age at death = date of death). There are numerous suggestions about how to analyze the data. No one solution has been satisfactory. The purpose of this study is to provide another analytic method by extending the Cox's lifetable regression model with time-dependent covariates. The new approach contains the following features: (1) It is based on the conditional maximum likelihood procedure using a proportional hazard function described by Cox (1972), treating the age factor as the underlying hazard to estimate the parameters for the cohort and period factors. (2) The model is flexible so that both the cohort and period factors can be treated as dummy or continuous variables, and the parameter estimations can be obtained for numerous combinations of variables as in a regression analysis. (3) The model is applicable even when the time period is unequally spaced.^ Two specific models are considered to illustrate the new approach and applied to the U.S. prostate cancer data. We find that there are significant differences between all cohorts and there is a significant period effect for both whites and nonwhites. The underlying hazard increases exponentially with age indicating that old people have much higher risk than young people. A log transformation of relative risk shows that the prostate cancer risk declined in recent cohorts for both models. However, prostate cancer risk declined 5 cohorts (25 years) earlier for whites than for nonwhites under the period factor model (0 0 0 1 1 1 1). These latter results are similar to the previous study by Holford (1983).^ The new approach offers a general method to analyze the age-period-cohort data without using any arbitrary constraint in the model. ^