15 resultados para Integer Least Squares

em DigitalCommons@The Texas Medical Center


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this research is to examine the relative profitability of the firm within the nursing facility industry in Texas. An examination is made of the variables expected to affect profitability and of importance to the design and implementation of regulatory policy. To facilitate this inquiry, specific questions addressed are: (1) Do differences in ownership form affect profitability (defined as operating income before fixed costs)? (2) What impact does regional location have on profitability? (3) Do patient case-mix and access to care by Medicaid patients differ between proprietary and non-profit firms and facilities located in urban versus rural regions, and what association exists between these variables and profitability? (4) Are economies of scale present in the nursing home industry? (5) Do nursing facilities operate in a competitive output market characterized by the inability of a single firm to exhibit influence over market price?^ Prior studies have principally employed a cost function to assess efficiency differences between classifications of nursing facilities. The inherent weakness in this approach is that it only considers technical efficiency. Not both technical and price efficiency which are the two components of overall economic efficiency. One firm is more technically efficient compared to another if it is able to produce a given quantity of output at the least possible costs. Price efficiency means that scarce resources are being directed towards their most valued use. Assuming similar prices in both input and output markets, differences in overall economic efficiency between firm classes are assessed through profitability, hence a profit function.^ Using the framework of the profit function, data from 1990 Medicaid Costs Reports for Texas, and the analytic technique of Ordinary Least Squares Regression, the findings of the study indicated (1) similar profitability between nursing facilities organized as for-profit versus non-profit and located in urban versus rural regions, (2) an inverse association between both payor-mix and patient case-mix with profitability, (3) strong evidence for the presence of scale economies, and (4) existence of a competitive market structure. The paper concludes with implications regarding reimbursement methodology and construction moratorium policies in Texas. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The desire to promote efficient allocation of health resources and effective patient care has focused attention on home care as an alternative to acute hospital service. in particular, clinical home care is suggested as a substitute for the final days of hospital stay. This dissertation evaluates the relationship between hospital and home care services for residents of British Columbia, Canada beginning in 1993/94 using data from the British Columbia Linked Health database. ^ Lengths of stay for patients referred to home care following hospital discharge are compared to those for patients not referred to home care. Ordinary least squares regression analysis adjusts for age, gender, admission severity, comorbidity, complications, income, and other patient, physician, and hospital characteristics. Home care clients tend to have longer stays in hospital than patients not referred to home care (β = 2.54, p = 0.0001). Longer hospital stays are evident for all home care client groups as well as both older and younger patients. Sensitivity analysis for referral time to direct care and extreme lengths of stay are consistent with these findings. Two stage regression analysis indicates that selection bias is not significant.^ Patients referred to clinical home care also have different health service utilization following discharge compared to patients not referred to home care. Home care nursing clients use more medical services to complement home care. Rehabilitation clients initially substitute home care for physiotherapy services but later are more likely to be admitted to residential care. All home care clients are more likely to be readmitted to hospital during the one year follow-up period. There is also a strong complementary association between direct care referral and homemaker support. Rehabilitation clients have a greater risk of dying during the year following discharge. ^ These results suggest that home care is currently used as a complement rather than a substitute for some acute health services. Organizational and resource issues may contribute to the longer stays by home care clients. Program planning and policies are required if home care is to provide an effective substitute for acute hospital days. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is widely acknowledged in theoretical and empirical literature that social relationships, comprising of structural measures (social networks) and functional measures (perceived social support) have an undeniable effect on health outcomes. However, the actual mechanism of this effect has yet to be clearly understood or explicated. In addition, comorbidity is found to adversely affect social relationships and health related quality of life (a valued outcome measure in cancer patients and survivors). ^ This cross sectional study uses selected baseline data (N=3088) from the Women's Healthy Eating and Living (WHEL) study. Lisrel 8.72 was used for the latent variable structural equation modeling. Due to the ordinal nature of the data, Weighted Least Squares (WLS) method of estimation using Asymptotic Distribution Free covariance matrices was chosen for this analysis. The primary exogenous predictor variables are Social Networks and Comorbidity; Perceived Social Support is the endogenous predictor variable. Three dimensions of HRQoL, physical, mental and satisfaction with current quality of life were the outcome variables. ^ This study hypothesizes and tests the mechanism and pathways between comorbidity, social relationships and HRQoL using latent variable structural equation modeling. After testing the measurement models of social networks and perceived social support, a structural model hypothesizing associations between the latent exogenous and endogenous variables was tested. The results of the study after listwise deletion (N=2131) mostly confirmed the hypothesized relationships (TLI, CFI >0.95, RMSEA = 0.05, p=0.15). Comorbidity was adversely associated with all three HRQoL outcomes. Strong ties were negatively associated with perceived social support; social network had a strong positive association with perceived social support, which served as a mediator between social networks and HRQoL. Mental health quality of life was the most adversely affected by the predictor variables. ^ This study is a preliminary look at the integration of structural and functional measures of social relationships, comorbidity and three HRQoL indicators using LVSEM. Developing stronger social networks and forming supportive relationships is beneficial for health outcomes such as HRQoL of cancer survivors. Thus, the medical community treating cancer survivors as well as the survivor's social networks need to be informed and cognizant of these possible relationships. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Anticancer drugs typically are administered in the clinic in the form of mixtures, sometimes called combinations. Only in rare cases, however, are mixtures approved as drugs. Rather, research on mixtures tends to occur after single drugs have been approved. The goal of this research project was to develop modeling approaches that would encourage rational preclinical mixture design. To this end, a series of models were developed. First, several QSAR classification models were constructed to predict the cytotoxicity, oral clearance, and acute systemic toxicity of drugs. The QSAR models were applied to a set of over 115,000 natural compounds in order to identify promising ones for testing in mixtures. Second, an improved method was developed to assess synergistic, antagonistic, and additive effects between drugs in a mixture. This method, dubbed the MixLow method, is similar to the Median-Effect method, the de facto standard for assessing drug interactions. The primary difference between the two is that the MixLow method uses a nonlinear mixed-effects model to estimate parameters of concentration-effect curves, rather than an ordinary least squares procedure. Parameter estimators produced by the MixLow method were more precise than those produced by the Median-Effect Method, and coverage of Loewe index confidence intervals was superior. Third, a model was developed to predict drug interactions based on scores obtained from virtual docking experiments. This represents a novel approach for modeling drug mixtures and was more useful for the data modeled here than competing approaches. The model was applied to cytotoxicity data for 45 mixtures, each composed of up to 10 selected drugs. One drug, doxorubicin, was a standard chemotherapy agent and the others were well-known natural compounds including curcumin, EGCG, quercetin, and rhein. Predictions of synergism/antagonism were made for all possible fixed-ratio mixtures, cytotoxicities of the 10 best-scoring mixtures were tested, and drug interactions were assessed. Predicted and observed responses were highly correlated (r2 = 0.83). Results suggested that some mixtures allowed up to an 11-fold reduction of doxorubicin concentrations without sacrificing efficacy. Taken together, the models developed in this project present a general approach to rational design of mixtures during preclinical drug development. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study aims to address two research questions. First, ‘Can we identify factors that are determinants both of improved health outcomes and of reduced costs for hospitalized patients with one of six common diagnoses?’ Second, ‘Can we identify other factors that are determinants of improved health outcomes for such hospitalized patients but which are not associated with costs?’ The Healthcare Cost and Utilization Project (HCUP) Nationwide Inpatient Sample (NIS) database from 2003 to 2006 was employed in this study. The total study sample consisted of hospitals which had at least 30 patients each year for the given diagnosis: 954 hospitals for acute myocardial infarction (AMI), 1552 hospitals for congestive heart failure (CHF), 1120 hospitals for stroke (STR), 1283 hospitals for gastrointestinal hemorrhage (GIH), 979 hospitals for hip fracture (HIP), and 1716 hospitals for pneumonia (PNE). This study used simultaneous equations models to investigate the determinants of improvement in health outcomes and of cost reduction in hospital inpatient care for these six common diagnoses. In addition, the study used instrumental variables and two-stage least squares random effect model for unbalanced panel data estimation. The study concluded that a few factors were determinants of high quality and low cost. Specifically, high specialty was the determinant of high quality and low costs for CHF patients; small hospital size was the determinant of high quality and low costs for AMI patients. Furthermore, CHF patients who were treated in Midwest, South, and West region hospitals had better health outcomes and lower hospital costs than patients who were treated in Northeast region hospitals. Gastrointestinal hemorrhage and pneumonia patients who were treated in South region hospitals also had better health outcomes and lower hospital costs than patients who were treated in Northeast region hospitals. This study found that six non-cost factors were related to health outcomes for a few diagnoses: hospital volume, percentage emergency room admissions for a given diagnosis, hospital competition, specialty, bed size, and hospital region.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interaction effect is an important scientific interest for many areas of research. Common approach for investigating the interaction effect of two continuous covariates on a response variable is through a cross-product term in multiple linear regression. In epidemiological studies, the two-way analysis of variance (ANOVA) type of method has also been utilized to examine the interaction effect by replacing the continuous covariates with their discretized levels. However, the implications of model assumptions of either approach have not been examined and the statistical validation has only focused on the general method, not specifically for the interaction effect.^ In this dissertation, we investigated the validity of both approaches based on the mathematical assumptions for non-skewed data. We showed that linear regression may not be an appropriate model when the interaction effect exists because it implies a highly skewed distribution for the response variable. We also showed that the normality and constant variance assumptions required by ANOVA are not satisfied in the model where the continuous covariates are replaced with their discretized levels. Therefore, naïve application of ANOVA method may lead to an incorrect conclusion. ^ Given the problems identified above, we proposed a novel method modifying from the traditional ANOVA approach to rigorously evaluate the interaction effect. The analytical expression of the interaction effect was derived based on the conditional distribution of the response variable given the discretized continuous covariates. A testing procedure that combines the p-values from each level of the discretized covariates was developed to test the overall significance of the interaction effect. According to the simulation study, the proposed method is more powerful then the least squares regression and the ANOVA method in detecting the interaction effect when data comes from a trivariate normal distribution. The proposed method was applied to a dataset from the National Institute of Neurological Disorders and Stroke (NINDS) tissue plasminogen activator (t-PA) stroke trial, and baseline age-by-weight interaction effect was found significant in predicting the change from baseline in NIHSS at Month-3 among patients received t-PA therapy.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Current statistical methods for estimation of parametric effect sizes from a series of experiments are generally restricted to univariate comparisons of standardized mean differences between two treatments. Multivariate methods are presented for the case in which effect size is a vector of standardized multivariate mean differences and the number of treatment groups is two or more. The proposed methods employ a vector of independent sample means for each response variable that leads to a covariance structure which depends only on correlations among the $p$ responses on each subject. Using weighted least squares theory and the assumption that the observations are from normally distributed populations, multivariate hypotheses analogous to common hypotheses used for testing effect sizes were formulated and tested for treatment effects which are correlated through a common control group, through multiple response variables observed on each subject, or both conditions.^ The asymptotic multivariate distribution for correlated effect sizes is obtained by extending univariate methods for estimating effect sizes which are correlated through common control groups. The joint distribution of vectors of effect sizes (from $p$ responses on each subject) from one treatment and one control group and from several treatment groups sharing a common control group are derived. Methods are given for estimation of linear combinations of effect sizes when certain homogeneity conditions are met, and for estimation of vectors of effect sizes and confidence intervals from $p$ responses on each subject. Computational illustrations are provided using data from studies of effects of electric field exposure on small laboratory animals. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

When choosing among models to describe categorical data, the necessity to consider interactions makes selection more difficult. With just four variables, considering all interactions, there are 166 different hierarchical models and many more non-hierarchical models. Two procedures have been developed for categorical data which will produce the "best" subset or subsets of each model size where size refers to the number of effects in the model. Both procedures are patterned after the Leaps and Bounds approach used by Furnival and Wilson for continuous data and do not generally require fitting all models. For hierarchical models, likelihood ratio statistics (G('2)) are computed using iterative proportional fitting and "best" is determined by comparing, among models with the same number of effects, the Pr((chi)(,k)('2) (GREATERTHEQ) G(,ij)('2)) where k is the degrees of freedom for ith model of size j. To fit non-hierarchical as well as hierarchical models, a weighted least squares procedure has been developed.^ The procedures are applied to published occupational data relating to the occurrence of byssinosis. These results are compared to previously published analyses of the same data. Also, the procedures are applied to published data on symptoms in psychiatric patients and again compared to previously published analyses.^ These procedures will make categorical data analysis more accessible to researchers who are not statisticians. The procedures should also encourage more complex exploratory analyses of epidemiologic data and contribute to the development of new hypotheses for study. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this study was to examine, in the context of an economic model of health production, the relationship between inputs (health influencing activities) and fitness.^ Primary data were collected from 204 employees of a large insurance company at the time of their enrollment in an industrially-based health promotion program. The inputs of production included medical care use, exercise, smoking, drinking, eating, coronary disease history, and obesity. The variables of age, gender and education known to affect the production process were also examined. Two estimates of fitness were used; self-report and a physiologic estimate based on exercise treadmill performance. Ordinary least squares and two-stage least squares regression analyses were used to estimate the fitness production functions.^ In the production of self-reported fitness status the coefficients for the exercise, smoking, eating, and drinking production inputs, and the control variable of gender were statistically significant and possessed theoretically correct signs. In the production of physiologic fitness exercise, smoking and gender were statistically significant. Exercise and gender were theoretically consistent while smoking was not. Results are compared with previous analyses of health production. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the difficulties in the practical application of ridge regression is that, for a given data set, it is unknown whether a selected ridge estimator has smaller squared error than the least squares estimator. The concept of the improvement region is defined, and a technique is developed which obtains approximate confidence intervals for the value of ridge k which produces the maximum reduction in mean squared error. Two simulation experiments were conducted to investigate how accurate these approximate confidence intervals might be. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The association between fine particulate matter air pollution (PM2.5) and cardiovascular disease (CVD) mortality was spatially analyzed for Harris County, Texas, at the census tract level. The objective was to assess how increased PM2.5 exposure related to CVD mortality in this area while controlling for race, income, education, and age. An estimated exposure raster was created for Harris County using Kriging to estimate the PM2.5 exposure at the census tract level. The PM2.5 exposure and the CVD mortality rates were analyzed in an Ordinary Least Squares (OLS) regression model and the residuals were subsequently assessed for spatial autocorrelation. Race, median household income, and age were all found to be significant (p<0.05) predictors in the model. This study found that for every one μg/m3 increase in PM2.5 exposure, holding age and education variables constant, an increase of 16.57 CVD deaths per 100,000 would be predicted for increased minimum exposure values and an increase of 14.47 CVD deaths per 100,000 would be predicted for increased maximum exposure values. This finding supports previous studies associating PM2.5 exposure with CVD mortality. This study further identified the areas of greatest PM2.5 exposure in Harris County as being the geographical locations of populations with the highest risk of CVD (i.e., predominantly older, low-income populations with a predominance of African Americans). The magnitude of the effect of PM2.5 exposure on CVD mortality rates in the study region indicates a need for further community-level studies in Harris County, and suggests that reducing excess PM2.5 exposure would reduce CVD mortality.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The infant mortality rate (IMR) is considered to be one of the most important indices of a country's well-being. Countries around the world and other health organizations like the World Health Organization are dedicating their resources, knowledge and energy to reduce the infant mortality rates. The well-known Millennium Development Goal 4 (MDG 4), whose aim is to archive a two thirds reduction of the under-five mortality rate between 1990 and 2015, is an example of the commitment. ^ In this study our goal is to model the trends of IMR between the 1950s to 2010s for selected countries. We would like to know how the IMR is changing overtime and how it differs across countries. ^ IMR data collected over time forms a time series. The repeated observations of IMR time series are not statistically independent. So in modeling the trend of IMR, it is necessary to account for these correlations. We proposed to use the generalized least squares method in general linear models setting to deal with the variance-covariance structure in our model. In order to estimate the variance-covariance matrix, we referred to the time-series models, especially the autoregressive and moving average models. Furthermore, we will compared results from general linear model with correlation structure to that from ordinary least squares method without taking into account the correlation structure to check how significantly the estimates change.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Life expectancy has consistently increased over the last 150 years due to improvements in nutrition, medicine, and public health. Several studies found that in many developed countries, life expectancy continued to rise following a nearly linear trend, which was contrary to a common belief that the rate of improvement in life expectancy would decelerate and was fit with an S-shaped curve. Using samples of countries that exhibited a wide range of economic development levels, we explored the change in life expectancy over time by employing both nonlinear and linear models. We then observed if there were any significant differences in estimates between linear models, assuming an auto-correlated error structure. When data did not have a sigmoidal shape, nonlinear growth models sometimes failed to provide meaningful parameter estimates. The existence of an inflection point and asymptotes in the growth models made them inflexible with life expectancy data. In linear models, there was no significant difference in the life expectancy growth rate and future estimates between ordinary least squares (OLS) and generalized least squares (GLS). However, the generalized least squares model was more robust because the data involved time-series variables and residuals were positively correlated. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of respiratory motion on patient anatomy poses a challenge to accurate radiation therapy, especially in lung cancer treatment. Modern radiation therapy planning uses models of tumor respiratory motion to account for target motion in targeting. The tumor motion model can be verified on a per-treatment session basis with four-dimensional cone-beam computed tomography (4D-CBCT), which acquires an image set of the dynamic target throughout the respiratory cycle during the therapy session. 4D-CBCT is undersampled if the scan time is too short. However, short scan time is desirable in clinical practice to reduce patient setup time. This dissertation presents the design and optimization of 4D-CBCT to reduce the impact of undersampling artifacts with short scan times. This work measures the impact of undersampling artifacts on the accuracy of target motion measurement under different sampling conditions and for various object sizes and motions. The results provide a minimum scan time such that the target tracking error is less than a specified tolerance. This work also presents new image reconstruction algorithms for reducing undersampling artifacts in undersampled datasets by taking advantage of the assumption that the relevant motion of interest is contained within a volume-of-interest (VOI). It is shown that the VOI-based reconstruction provides more accurate image intensity than standard reconstruction. The VOI-based reconstruction produced 43% fewer least-squares error inside the VOI and 84% fewer error throughout the image in a study designed to simulate target motion. The VOI-based reconstruction approach can reduce acquisition time and improve image quality in 4D-CBCT.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With most clinical trials, missing data presents a statistical problem in evaluating a treatment's efficacy. There are many methods commonly used to assess missing data; however, these methods leave room for bias to enter the study. This thesis was a secondary analysis on data taken from TIME, a phase 2 randomized clinical trial conducted to evaluate the safety and effect of the administration timing of bone marrow mononuclear cells (BMMNC) for subjects with acute myocardial infarction (AMI).^ We evaluated the effect of missing data by comparing the variance inflation factor (VIF) of the effect of therapy between all subjects and only subjects with complete data. Through the general linear model, an unbiased solution was made for the VIF of the treatment's efficacy using the weighted least squares method to incorporate missing data. Two groups were identified from the TIME data: 1) all subjects and 2) subjects with complete data (baseline and follow-up measurements). After the general solution was found for the VIF, it was migrated Excel 2010 to evaluate data from TIME. The resulting numerical value from the two groups was compared to assess the effect of missing data.^ The VIF values from the TIME study were considerably less in the group with missing data. By design, we varied the correlation factor in order to evaluate the VIFs of both groups. As the correlation factor increased, the VIF values increased at a faster rate in the group with only complete data. Furthermore, while varying the correlation factor, the number of subjects with missing data was also varied to see how missing data affects the VIF. When subjects with only baseline data was increased, we saw a significant rate increase in VIF values in the group with only complete data while the group with missing data saw a steady and consistent increase in the VIF. The same was seen when we varied the group with follow-up only data. This essentially showed that the VIFs steadily increased when missing data is not ignored. When missing data is ignored as with our comparison group, the VIF values sharply increase as correlation increases.^