6 resultados para Insulin Sensitivity
em DigitalCommons@The Texas Medical Center
Resumo:
Studies suggest that depression affects glucose metabolism, and therefore is a risk factor for insulin resistance. The association between depression and insulin resistance has been investigated in a number of studies, but there is no agreement on the results. The objective of this study is to survey the epidemiological studies, identify the ones that measured the association of depression (as exposure) with insulin resistance (as outcome), and perform a systematic review to assess the reliability and strength of the association. For high quality reporting, and assessment, this systematic review used the outlined procedures, guidelines and recommendations for reviews in health care, suggested by the Centre for Reviews and Dissemination, along with recommendations from the STROBE group (Strengthening the Reporting of Observational Studies in Epidemiology). Ovid MEDLINE 1996 to April Week 1 2010, was used to identify the relevant epidemiological studies. To identify the most relevant set of articles for this systematic review, a set of inclusion and exclusion criteria were applied. Six studies that met the specific criteria were selected. Key information from identified studies was tabulated, and the methodological quality, internal and external validity, and the strength of the evidence of the selected studies were assessed. The result from the tabulated data of the reviewed studies indicates that the studies either did not apply a case definition for insulin resistance in their investigation, or did not state a specific value for the index used to define insulin resistance. The quality assessment of the reviewed studies indicates that to assess the association between insulin resistance and depression, specifying a case definition for insulin resistance is important. The case definition for insulin resistance is defined by the World Health Organization and the European Group for the Study of Insulin Resistance as the insulin sensitivity index of the lowest quartile or lowest decile of a general population, respectively. Three studies defined the percentile cut-off point for insulin resistance, but did not give the insulin sensitivity index value. In these cases, it is not possible to compare the results. Three other studies did not define the cut-off point for insulin resistance. In these cases, it is hard to confirm the existence of insulin resistance. In conclusion, to convincingly answer our question, future studies need to adopt a clear case definition, define a percentile cut-off point and reference population, and give value of the insulin resistance measure at the specified percentile.^
Resumo:
Approximately 33% of clinical breast carcinomas require estrogens to proliferate. Epidemiological data show that insulin resistance and diabetes mellitus is 2–3 times more prevalent in women with breast cancer than those with benign breast lesions, suggesting a clinical link between insulin and estradiol. Insulin and estradiol have a synergistic effect on the growth of MCF7 breast cancer cells, and long-term estradiol treatment upregulates the expression of the key insulin signaling protein IRS-1. The goal of this study was to further define the mechanism(s) of cross-talk between insulin and estradiol in regulating the growth of breast cancer. Using MCF7 cells, acute treatment with insulin or estradiol alone was found to stimulate two activities associated with growth: Erk MAP kinase and PI 3-kinase. However, combined acute treatment had an antagonistic effect on both activities. Acute estradiol treatment inhibited the insulin-stimulated tyrosine phosphorylation of IRS-1 while increasing its serine phosphorylation; the serine phosphorylation was attenuated by the PI 3-kinase inhibitor wortmannin. The acute antagonism observed with combined estradiol and insulin are not consistent with the long-term synergistic effect on growth. In contrast, chronic estradiol treatment enhanced the insulin-sensitivity of breast cancer cells as measured by increases in total cellular insulin-stimulated tyrosine phosphorylation of IRS-1 and activation of PI 3-kinase. Estradiol stimulation of gene transcription was found to require PI 3-kinase activity but not MAP kinase activity. Insulin alone had no effect on ER transcriptional activity, but chronic treatment in combination with estradiol resulted in synergism of ER transcription. The synergistic effect of insulin and estradiol on MCF7 cell growth was also found to require PI 3-kinase but not MAP kinase activity. Therefore, chronic estradiol treatment increases insulin stimulation of PI 3-kinase, and PI 3-kinase is required for estradiol stimulation of gene transcription alone and in combined synergy with insulin. These data demonstrate that PI 3-kinase is the locus for the cross-talk between insulin and estradiol which results in enhanced breast cancer growth with long-term exposure to both hormones. This may have important clinical implications for women with high risk for breast cancer and/or diabetes mellitus. ^
Resumo:
Thiazolidinediones (TZDs), a novel class of anti-diabetic drugs, have been known as ligands of peroxisome proliferator-activated receptor γ (PPARγ), a transcription factor that belongs to the nuclear receptor superfamily. These synthetic compounds improve insulin sensitivity in patients with type II diabetes likely through activating PAPRγ. Interestingly, they were also shown to inhibit cell growth and proliferation in a wide variety of tumor cell lines. The aim of this study is to assess the potential use of TZDs in the prevention of carcinogenesis using mouse skin as a model. ^ We found that troglitazone, one of TZD drugs, strongly inhibited cultured mouse skin keratinocyte proliferation as demonstrated by [3H]thymidine incorporation assay. It also induced a cell cycle G1 phase arrest and inhibited expression of cell cycle proteins, including cyclin D1, cdk2 and cdk4. Further experiments showed that PPARγ expression in keratinocytes was surprisingly undetectable in vitro or in vivo. Consistent with this, no endogenous PPARγ function in keratinocytes was found, suggesting that the inhibition of troglitazone on keratinocyte proliferation and cell cycle was PPARγ-independent. We further found that troglitazone inhibited insulin/insulin growth factor I (IGF-1) mitogenic signaling, which may explains, at least partly, its inhibitory effect on keratinocyte proliferation. We showed that troglitazone rapidly inhibited IGF-1 induced phosphorylation of p70S6K by mammalian target of rapamycin (mTOR). However, troglitazone did not directly inhibit mTOR kinase activity as shown by in vitro kinase assay. The inhibition of p70S6K is likely to be the result of strong activation of AMP activated protein kinase (AMPK) by TZDs. Stable expression of a dominant negative AMPK in keratinocytes blocked the inhibitory effect of troglitazone on IGF-1 induced phosphorylation of p70S6K. ^ Finally, we found that dietary TZDs inhibited by up to 73% mouse skin tumor development promoted by elevated IGF-1 signaling in BK5-IGF-1 transgenic mice, while they had no or little effect on skin tumor development promoted by 12-O-tetradecanoylphorbol-13-acetate (TPA) or ultraviolet (UV). Since IGF-1 signaling is frequently found to be elevated in patients with insulin resistance and in many human tumors, our data suggest that TZDs may provide tumor preventive benefit particularly to these patients. ^
Resumo:
The mitochondrial carnitine palmitoyltransferase (CPT) system is composed of two proteins, CPT-I and CPT-II, involved in the transport of fatty acids into the mitochondrial matrix to undergo $\beta$-oxidation. CPT-I is located outside the inner membrane and CPT-II is located on the inner aspect of the inner membrane. The CPT proteins are distinct with different molecular weights and activities. The malonyl-CoA sensitivity of CPT-I has been proposed as a regulatory step in $\beta$-oxidation. Using the neonatal rat cardiac myocyte, assays were designed to discriminate between these activities in situ using digitonin and Triton X-100. With this methodology, we are able to determine the involvement of the IGF-I pathway in the insulin-mediated increase in CPT activities. Concentrations of digitonin up to 25 $\mu$M fail to release citrate synthase from the mitochondrial matrix or alter the malonyl-CoA sensitivity of CPT-I. If the mitochondrial matrix was exposed, malonyl-CoA insensitive CPT-II would reduce malonyl-CoA sensitivity. In contrast to digitonin, Triton X-100 (0.15%) releases citrate synthase from the matrix and exposes CPT-II. CPT-II activity is confirmed by the absence of malonyl-CoA sensitivity. To examine the effects of various agents on the expression and/or activity of CPT, it is necessary to use serum-free medium to eliminate mitogenic effects of serum proteins. Comparison of different media to optimize CPT activity and cell viability resulted in the decision to use Dulbecco's Modified Eagle medium supplemented with transferrin. In three established models of cardiac hypertrophy using the neonatal rat cardiac myocyte there is a significant increase in CPT-I and CPT-II activity in the treated cells. Analogous to the situation seen in the hypertrophy model, insulin also significantly increases the activity of the mitochondrial proteins CPT-I, CPT-II and cytochrome oxidase with a coinciding increase the expression of CPT-II and cytochrome oxidase mRNA. The removal of serum increases the I$\sb{50}$ (concentration of inhibitor that halves enzyme activity) of CPT-I for malonyl-CoA by four-fold. Incubation with insulin returns I$\sb{50}$ values to serum levels. Incubation with insulin significantly increases malonyl-CoA and ATP levels in the cells with a resulting reduction in palmitate oxidation. Once malonyl-CoA inhibition of CPT-I is removed by permeabilizing the cells, insulin significantly increases the oxidation of palmitoyl-CoA in a manner which parallels the increase in CPT-I activity. Interestingly, CPT-II activity increases significantly only at the tissue culture concentration (1.7 $\mu$M) of insulin suggesting that the IGF-I pathway may be involved. Supporting a role for the IGF-I pathway in the insulin-induced increase in CPT activity is the significant increase in the synthesis of both cellular and mitochondrial proteins as well as increased synthesis of CPT-II. Consistent with an IGF-mediated pathway for the effect of insulin, IGF-I (10 ng/ml) significantly increases the activities of both CPT-I and -II. An IGF-I analogue which inhibits the autophosphorylation of the IGF-I receptor blunts the insulin-mediated increase in CPT-I and -II activity by greater than 70% and virtually eliminates the IGF-I response by greater than 90%. This is the first study to demonstrate the involvement of the IGF-I pathway in the regulation of mitochondrial protein expression, e.g. CPT. ^
Resumo:
Comparison of gene expressing profiles between gliomas with different grades revealed frequent overexpression of insulin-like growth factor binding protein 2 (IGFBP2) in glioblastomas (GBM), in which uncontrolled cell proliferation, angiogenesis, invasion and anti-apoptosis are hallmarks. Using the glia-specific gene transfer transgenic mouse and the stable LN229(BP2) GBM cell lines, we found that IGFBP2 by itself cannot transform cells in vitro and in vivo. IGFBP2 had growth inhibitory effects on mouse primary neural progenitors, but overexpression of IGFBP2 had no effect on GBM cells. ^ Although IGFBP2 does not initiate gliomagenesis, using tissue array technology, we observed strong correlation between IGFBP2 overexpression and VEGF up-regulation in human diffuse gliomas. Furthermore, overexpression of IGFBP2 in GBM cells not only enhanced VEGF expression but also increased the malignant potential of U87 MG cells in our angiogenesis xenograft animal model. ^ In parallel to these studies, using established stable SNB19 GBM cells that overexpress IGFBP2, we found that IGFBP2 significantly increased invasion by induction of matrix metalloproteinase-2 (MMP-2) as well as other invasion related genes, providing evidence that IGFBP2 contributes to glioma progression in part by enhancing MMP-2 gene transcription and in turn tumor cell invasion. ^ Finally, we found that primary filial cells infected with an anti-sense IGFBP2 construct have markedly increased sensitivity to γ irradiation and reduced Akt activation. On the other hand, SNB19(BP2) stable lines have consistently increased levels of Akt and NFkB activation, suggesting that one possible mechanism for anti-apoptosic function of IGFBP2 is through the activation of Akt and NFkB. Beside this, what is especially interesting is the finding that Akt protein was cleaved and inactivated during apoptosis by caspases, and IGFBP2 can prevent Akt cleavage, revealing another possible mechanism through it IGFBP2 exhibit strong antiapoptotic effects. Our data showed that IGFBP2 is a specific substrate for caspase-3, raising the possibility that IGFBP2 may inhibit apoptosis by a suicide mechanism. ^ In summary, using cellular, genomics, and molecular approaches, this thesis documented the potential roles of IGFBP2 in glioma progression. Our findings shed light on an important biological aspect of glioma progression and may provide new insights useful for the design of novel mechanism-based therapies for GBM. ^
Resumo:
Imatinib mesylate, a selective inhibitor of KIT, PDGFR, and Abl kinases, has shown significant success as a therapy for patients with advanced gastrointestinal stromal tumors (GISTs). However, the underlying mechanisms of imatinib-induced cytotoxicity are not well understood. Using gene expression profiling and real-time PCR for target validation, we identified insulin-like growth factor binding protein-3 (IGFBP3) to be to be up-regulated after imatinib treatment in imatinib-sensitive GISTs. IGFBP3 is a multifunctional protein that regulates cell proliferation and survival and mediates the effects of a variety of anti-cancer agents through IGF-dependent and IGF-independent mechanisms. Therefore, we hypothesized that IGFBP3 mediates GIST cell response to imatinib. To test this hypothesis, we manipulated IGFBP3 protein levels in two KIT mutant, imatinib-sensitive GIST cell lines and assessed the resultant changes in cell viability, survival, and imatinib sensitivity. In GIST882 cells, endogenous IGFBP3 was required for cell viability. However, inhibiting imatinib-induced IGFBP3 up-regulation by RNA interference or neutralization resulted in reduced drug sensitivity, suggesting that IGFBP3 sensitizes GIST882 cells to imatinib. GIST-T1 cells, on the other hand, had no detectable levels of endogenous IGFBP3, nor did imatinib induce IGFBP3 up-regulation, in contrast to our previous findings. IGFBP3 overexpression in GIST-T1 cells reduced viability but did not induce cell death; rather, the cells became polyploid through a mechanism that may involve attenuated Cdc20 expression and securin degradation. Moreover, IGFBP3 overexpression resulted in a loss of KIT activation and decreased levels of mature KIT. Consistent with this, GIST-T1 cells overexpressing IGFBP3 were less sensitive to imatinib. Furthermore, as neither GIST882 cells nor GIST-T1 cells expressed detectable levels of IGF-1R, IGFBP3 is likely not exerting its effects by modulating IGF signaling through IGF-1R or IR/IGF-1R hybrid receptors in these cell lines. Collectively, these findings demonstrate that IGFBP3 has cell-dependent effects and would, therefore, not be an ideal marker for identifying imatinib response in GISTs. Nevertheless, our results provide preliminary evidence that IGFBP3 may have some therapeutic benefits in GISTs. ^