4 resultados para Instrumentation and orchestration
em DigitalCommons@The Texas Medical Center
Resumo:
Chromosome segregation is a critical step during cell division to avoid aneuploidy and promote proper organismal development. Correct sister chromatid positioning and separation during mitosis helps to achieve faithful transmission of genetic material to daughter cells. This prevents improper chromosome partitioning that can potentially result in extrachromosomal fragments, increasing the tumorigenic potential of the cells. The kinetochore is a protenaicious structure responsible for the initiation and orchestration of chromosome movement during mitosis. This highly conserved structure among eukaryotes is required for chromosome attachment to the mitotic spindle and failure to assemble the kinetochore results in aberrant chromosome segregation. Thus elucidating the mechanism of kinetochore assembly is important to have a better understanding of the regulation that controls chromosome segregation. Our previous work identified the C. elegans Tousled-like kinase (TLK-1) as a mitotic kinase and depletion of TLK-1 results in embryonic lethality, characterized by nuclei displaying poor mitotic chromosome alignment, lagging chromosome, and chromosome bridges during anaphase. Additionally, previous studies from our group revealed that TLK-1 is phosphorylated independently by Aurora B at serine 634, and by CHK-1 at threonine T610. The research presented herein reveals that both phosphorylated forms of TLK-1 associate with the kinetochore during mitosis. Moreover, by systematic depletion of kinetochore proteins, I uncovered that pTLK-1 is bona fide kinetochore component that is located at the outer kinetochore layer, influencing the microtubule-binding interface. I also demonstrated that TLK-1 is necessary for the kinetochore localization of the microtubule interacting proteins CLS-2 and LIS-1 and I show that embryos depleted of TLK-1 presented an aberrant twisted kinetochore pattern. Furthermore, I established that the inner kinetochore protein KNL-2 is an in vitro substrate of TLK-1 indicating a possible role of TLK-1 in regulating centromeric assembly. Collectively, these results suggest a novel role for the Tousled-like kinase in regulation of kinetochore assembly and microtubule dynamics and demonstrate the necessity of TLK-1 for proper chromosome segregation in C. elegans.
Resumo:
BACKGROUND: Little is known about the effects of hypothermia therapy and subsequent rewarming on the PQRST intervals and heart rate variability (HRV) in term newborns with hypoxic-ischemic encephalopathy (HIE). OBJECTIVES: This study describes the changes in the PQRST intervals and HRV during rewarming to normal core body temperature of 2 newborns with HIE after hypothermia therapy. METHODS: Within 6 h after birth, 2 newborns with HIE were cooled to a core body temperature of 33.5 degrees C for 72 h using a cooling blanket, followed by gradual rewarming (0.5 degrees C per hour) until the body temperature reached 36.5 degrees C. Custom instrumentation recorded the electrocardiogram from the leads used for clinical monitoring of vital signs. Generalized linear mixed models were calculated to estimate temperature-related changes in PQRST intervals and HRV. Results: For every 1 degrees C increase in body temperature, the heart rate increased by 9.2 bpm (95% CI 6.8-11.6), the QTc interval decreased by 21.6 ms (95% CI 17.3-25.9), and low and high frequency HRV decreased by 0.480 dB (95% CI 0.052-0.907) and 0.938 dB (95% CI 0.460-1.416), respectively. CONCLUSIONS: Hypothermia-induced changes in the electrocardiogram should be monitored carefully in future studies.
Resumo:
This dissertation focuses on the leadership styles of managers, the impact these leadership styles have on the job satisfaction of staff nurses, and the proclivity of nurses to consider unionization. The aims of the dissertation include conducting a literature review on topics of leadership style, job satisfaction, and unionization; identifying and elucidating pertinent constructs with respect to shared interrelationships and how they could be measured; and developing a means of assessing if and to what extent transformational and transactional leadership styles affect nurse proclivity to unionize.^ The instrumentation selected includes the Multifactor Leadership Survey, Job Satisfaction Survey, and a newly created Union Preference Survey. Each survey instrument was evaluated as to its appropriateness to administer at a non-consultant level within a health care facility. Options other than self-administering the survey instruments include online access for participants, which provides confidentiality and encourages more responses. ^ The next part of the dissertation is a plan for health care facilities to use the survey tool by administering it themselves. The plan provides a general description of the survey tool, administering the instrument, rating the instrument, and leadership development. Integration of the three surveys is presented in a non-statistical format by coordinating the results of the three survey instrument responses. Recommendations are presented on how to improve leadership development warranted for improvement.^ The conclusions reached are that nurses’ preference for unions is influenced by the leadership style of direct report managers, as rated by staff nurses, and the nurses’ job satisfaction, which is in turn in part dependent on their managers’ leadership style. Thus, changes in leadership style can have a profound impact on nurse job satisfaction and on nurses’ preference for unionization.^
Resumo:
Two sets of mass spectrometry-based methods were developed specifically for the in vivo study of extracellular neuropeptide biochemistry. First, an integrated micro-concentration/desalting/matrix-addition device was constructed for matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) to achieve attomole sensitivity for microdialysis samples. Second, capillary electrophoresis (CE) was incorporated into the above micro-liquid chromatography (LC) and MALDI MS system to provide two-dimensional separation and identification (i.e. electrophoretic mobility and molecular mass) for the analysis of complex mixtures. The latter technique includes two parts of instrumentation: (1) the coupling of a preconcentration LC column to the inlet of a CE capillary, and (2) the utilization of a matrix-precoated membrane target for continuous CE effluent deposition and for automatic MALDI MS analysis (imaging) of the CE track.^ Initial in vivo data reveals a carboxypeptidase A (CPA) activity in rat brain involved in extracellular neurotensin metabolism. Benzylsuccinic acid, a CPA inhibitor, inhibited neurotensin metabolite NT1-12 formation by 70%, while inhibitors of other major extracellular peptide metabolizing enzymes increased NT1-12 formation. CPA activity has not been observed in previous in vitro experiments. Next, the validity of the methodology was demonstrated in the detection and structural elucidation of an endogenous neuropeptide, (L)VV-hemorphin-7, in rat brain upon ATP stimulation. Finally, the combined micro-LC/CE/MALDI MS was used in the in vivo metabolic study of peptide E, a mu-selective opioid peptide with 25 amino acid residues. Profiles of 88 metabolites were obtained, their identity being determined by their mass-to-charge ratio and electrophoretic mobility. The results indicate that there are several primary cleavage sites in vivo for peptide E in the release of its enkephalin-containing fragments. ^