4 resultados para Inspection of schools

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With rates of obesity and overweight continuing to increase in the US, the attention of public health researchers has focused on nutrition and physical activity behaviors. However, attempts to explain the disparate rates of obesity and overweight between whites and Hispanics have often proven inadequate. Indeed, the nebulous term ‘ethnicity’ provides little important detail in addressing potential biological, behavioral, and environmental factors that may affect rates of obesity and overweight. In response to this, the present research seeks to test the explanatory powers of ethnicity by situating the nutrition and physical activity behaviors of whites and Hispanic into their broader social contexts. It is hypothesized that a student's gender and grade level, as well as the socioeconomic status and ethnic composition of their school, will have more predictive power for these behaviors than will self-reported ethnicity. ^ Analyses revealed that while ethnicity did not seem to impact nutrition behaviors among the wealthier schools and those with fewer Hispanics, ethnicity was relevant in explaining these behaviors in the poorest tertile of schools and those with the highest number of Hispanics. With respect to physical activity behaviors, the results were mixed. The variables representing regular physical activity, participation in extracurricular physical activities, and performance of strengthening and toning exercises were more likely to be determined by SES and ethnic composition than ethnicity, especially among 8th grade males. However, school sports team and physical education participation continued to vary by ethnicity, even after controlling for SES and ethnic composition of schools. In conclusion then, it is important to understand the intersecting demographic and social variables that define and surround the individual in order to understand nutrition and physical activity behaviors and thus overweight and obesity.^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction: US teens are having sex early; however, the vast majority of schools do not implement evidence-based sexual health education (SHE) programs that could delay sexual behavior and/or reduce risky behavior. This study examines middle school staff’s knowledge, attitudes, barriers, self-efficacy, and perceived support (psychosocial factors known to influence SHE program adoption and implementation). Methods: Professional school staff from 33 southeast Texas middle schools completed an internet or paper-based survey. Prevalence estimates for psychosocial variables were computed for the total sample. Chi-square and t-test analyses examined variation by demographic factors. Results: Almost 70% of participants were female, 37% white, 42% black, 16% Hispanic; 20% administrators, 15% nurses/counselors, 31% non-physical education/non-health teachers, 28% physical education/health teachers; mean age = 42.78 years (SD = 10.9). Over 90% favored middle school SHE, and over 75% reported awareness of available SHE curricula or policies. More than 60% expressed confidence for discussing SHE. Staff perceived varying levels of administrator (28%-56%) support for SHE and varying levels of support for comprehensive sex education from outside stakeholders (e.g., parents, community leaders) (42%-85%). Overall, results were more favorable for physical education/health teachers, nurses/counselors, and administrators (when compared to non-physical education/non-health teachers) and individuals with experience teaching SHE. Few significant differences were observed by other demographic factors. Conclusions: Overall, study results were extremely positive, which may reflect a high level of readiness among school staff for adopting and implementing effective middle school SHE programs. Study results highlight the importance of several key action items for schools.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of group-randomized trials is particularly widespread in the evaluation of health care, educational, and screening strategies. Group-randomized trials represent a subset of a larger class of designs often labeled nested, hierarchical, or multilevel and are characterized by the randomization of intact social units or groups, rather than individuals. The application of random effects models to group-randomized trials requires the specification of fixed and random components of the model. The underlying assumption is usually that these random components are normally distributed. This research is intended to determine if the Type I error rate and power are affected when the assumption of normality for the random component representing the group effect is violated. ^ In this study, simulated data are used to examine the Type I error rate, power, bias and mean squared error of the estimates of the fixed effect and the observed intraclass correlation coefficient (ICC) when the random component representing the group effect possess distributions with non-normal characteristics, such as heavy tails or severe skewness. The simulated data are generated with various characteristics (e.g. number of schools per condition, number of students per school, and several within school ICCs) observed in most small, school-based, group-randomized trials. The analysis is carried out using SAS PROC MIXED, Version 6.12, with random effects specified in a random statement and restricted maximum likelihood (REML) estimation specified. The results from the non-normally distributed data are compared to the results obtained from the analysis of data with similar design characteristics but normally distributed random effects. ^ The results suggest that the violation of the normality assumption for the group component by a skewed or heavy-tailed distribution does not appear to influence the estimation of the fixed effect, Type I error, and power. Negative biases were detected when estimating the sample ICC and dramatically increased in magnitude as the true ICC increased. These biases were not as pronounced when the true ICC was within the range observed in most group-randomized trials (i.e. 0.00 to 0.05). The normally distributed group effect also resulted in bias ICC estimates when the true ICC was greater than 0.05. However, this may be a result of higher correlation within the data. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In 1941 the Texas Legislature appropriated $500,000 to the Board of Regents of the University of Texas to establish a cancer research hospital. The M. D. Anderson Foundation offered to match the appropriation with a grant of an equal sum and to provide a permanent site in Houston. In August, 1942 the Board of Regent of the University and the Trustees of the Foundation signed an agreement to embark on this project. This institution was to be the first one in the medical center, which was incorporated in October, 1945. The Board of Trustees of the Texas Medical Center commissioned a hospital survey to: - Define the needed hospital facilities in the area - Outline an integrated program to meet these needs - Define the facilities to be constructed - Prepare general recommendations for efficient progress The Hospital Study included information about population, hospitals, and other health care and education facilities in Houston and Harris County at that time. It included projected health care needs for future populations, education needs, and facility needs. It also included detailed information on needs for chronic illnesses, a school of public health, and nursing education. This study provides valuable information about the general population and the state of medicine in Houston and Harris County in the 1940s. It gives a unique perspective on the anticipated future as civic leaders looked forward in building the city and region. This document is critical to an understanding of the Texas Medical Center, Houston and medicine as they are today. SECTIONS INCLUDE: Abstract The Abstract was a summary of the 400 page document including general information about the survey area, community medical assets, and current and projected medical needs which the Texas Medical Center should meet. The 123 recommendations were both general (e.g., 12. “That in future planning, the present auxiliary department of the larger hospitals be considered inadequate to carry an added teaching research program of any sizable scope.”) and specific (e.g., 22. That 14.3% of the total acute bed requirement be allotted for obstetric care, reflecting a bed requirement of 522 by 1950, increasing to 1,173 by 1970.”) Section I: Survey Area This section basically addressed the first objective of the survey: “define the needed hospital facilities in the area.” Based on the admission statistics of hospitals, Harris County was included in the survey, with the recognition that growth from out-lying regional areas could occur. Population characteristics and vital statistics were included, with future trends discussed. Each of the hospitals in the area and government and private health organizations, such as the City-County Welfare Board, were documented. Statistics on the facilities use and capacity were given. Eighteen recommendations and observations on the survey area were given. Section II: Community Program This section basically addressed the second objective of the survey: “outline an integrated program to meet these needs.” The information from the Survey Area section formed the basis of the plans for development of the Texas Medical Center. In this section, specific needs, such as what medical specialties were needed, the location and general organization of a medical center, and the academic aspects were outlined. Seventy-four recommendations for these plans were provided. Section III: The Texas Medical Center The third and fourth objectives are addressed. The specific facilities were listed and recommendations were made. Section IV: Special Studies: Chronic Illness The five leading causes of death (heart disease, cancer, “apoplexy”, nephritis, and tuberculosis) were identified and statistics for morbidity and mortality provided. Diagnostic, prevention and care needs were discussed. Recommendations on facilities and other solutions were made. Section IV: Special Studies: School of Public Health An overview of the state of schools of public health in the US was provided. Information on the direction and need of this special school was also provided. Recommendations on development and organization of the proposed school were made. Section IV: Special Studies: Needs and Education Facilities for Nurses Nursing education was connected with hospitals, but the changes to academic nursing programs were discussed. The needs for well-trained nurses in an expanded medical environment were anticipated to result in significant increased demands of these professionals. An overview of the current situation in the survey area and recommendations were provided. Appendix A Maps, tables and charts provide background and statistical information for the previous sections. Appendix B Detailed census data for specific areas of the survey area in the report were included. Sketches of each of the fifteen hospitals and five other health institutions showed historical information, accreditations, staff, available facilities (beds, x-ray, etc.), academic capabilities and financial information.