2 resultados para Insects, Injurious and beneficial.
em DigitalCommons@The Texas Medical Center
Resumo:
Antibodies (Abs) to autoantigens and foreign antigens (Ags) mediate, respectively, various pathogenic and beneficial effects. Abs express enzyme-like nucleophiles that react covalently with electrophiles. A subpopulation of nucleophilic Abs expresses proteolytic activity, which can inactivate the Ag permanently. This thesis shows how the nucleophilicity can be exploited to inhibit harmful Abs or potentially protect against a virus. ^ Inactivation of pathogenic Abs from Hemophilia A (HA) patients by means of nucleophile-electrophile pairing was studied. Deficient factor VIII (FVIII) in HA subjects impairs blood coagulation. FVIII replacement therapy fails in 20-30% of HA patients due to production of anti-FVIII Abs. FVIII analogs containing electrophilic phosphonate group (E-FVIII and E-C2) were hypothesized to inactivate the Abs by reacting specifically and covalently with nucleophilic sites. Anti-FVIII IgGs from HA patients formed immune complexes with E-FVIII and E-C2 that remained irreversibly associated under conditions that disrupt noncovalent Ab-Ag complexes. The reaction induced irreversible loss of Ab anti-coagulant activity. E-FVIII alone displayed limited interference with coagulation. E-FVIII is a prototype reagent suitable for further development as a selective inactivator of pathogenic anti-FVIII Abs. ^ The beneficial function of Abs to human immunodeficiency virus type 1 (HIV-1) was analyzed. HIV-1 eludes the immune system by rapidly changing its coat protein structure. IgAs from noninfected subjects hydrolyzed gp120 and neutralized HIV-1 with modest potency by recognizing the gp120 421-433 epitope, a conserved B cell superantigenic region that is also essential for HIV-1 attachment to host cell CD4 receptors. An adaptive immune response to superantigens is generally prohibited due to their ability to downregulate B cells. IgAs from subjects with prolonged HIV-1 infection displayed improved catalytic hydrolysis of gp120 and exceptionally potent and broad neutralization of diverse CCR5-dependent primary HIV isolates attributable to recognition of the 421-433 epitope. This indicates that slow immunological bypass of the superantigenic character of gp120 is possible, opening the path to effective HIV vaccination. ^ My research reveals a novel route to inactivate pathogenic nucleophilic Abs using electrophilic antigens. Conversely, naturally occurring nucleophilic Abs may help impede HIV infection, and the Abs could be developed for passive immunotherapy of HIV infected subjects. ^
Resumo:
Grass carp reovirus (GCRV) is a member of the Aquareovirus genus of the family Reoviridae, a large family of double-stranded RNA (dsRNA) viruses infecting plants, insects, fishes and mammals. We report the first subnanometer-resolution three-dimensional structures of both GCRV core and virion by cryoelectron microscopy. These structures have allowed the delineation of interactions among the over 1000 molecules in this enormous macromolecular machine and a detailed comparison with other dsRNA viruses at the secondary-structure level. The GCRV core structure shows that the inner proteins have strong structural similarities with those of orthoreoviruses even at the level of secondary-structure elements, indicating that the structures involved in viral dsRNA interaction and transcription are highly conserved. In contrast, the level of similarity in structures decreases in the proteins situated in the outer layers of the virion. The proteins involved in host recognition and attachment exhibit the least similarities to other members of Reoviridae. Furthermore, in GCRV, the RNA-translocating turrets are in an open state and lack a counterpart for the sigma1 protein situated on top of the close turrets observed in mammalian orthoreovirus. Interestingly, the distribution and the organization of GCRV core proteins resemble those of the cytoplasmic polyhedrosis virus, a cypovirus and the structurally simplest member of the Reoviridae family. Our results suggest that GCRV occupies a unique structure niche between the simpler cypoviruses and the considerably more complex mammalian orthoreovirus, thus providing an important model for understanding the structural and functional conservation and diversity of this enormous family of dsRNA viruses.