2 resultados para Inquirições de 1258

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bone marrow (BM) stromal cells are ascribed two key functions, 1) stem cells for non-hematopoietic tissues (MSC) and 2) as components of the hematopoietic stem cell niche. Current approaches studying the stromal cell system in the mouse are complicated by the low yield of clonogenic progenitors (CFU-F). Given the perivascular location of MSC in BM, we developed an alternative methodology to isolate MSC from mBM. An intact ‘plug’ of bone marrow is expelled from bones and enzymatically disaggregated to yield a single cell suspension. The recovery of CFU-F (1917.95+199) reproducibly exceeds that obtained using the standard BM flushing technique (14.32+1.9) by at least 2 orders of magnitude (P<0.001; N = 8) with an accompanying 196-fold enrichment of CFU-F frequency. Purified BM stromal and vascular endothelial cell populations are readily obtained by FACS. A detailed immunophenotypic analysis of lineage depleted BM identified PDGFRαβPOS stromal cell subpopulations distinguished by their expression of CD105. Both subpopulations retained their original phenotype of CD105 expression in culture and demonstrate MSC properties of multi-lineage differentiation and the ability to transfer the hematopoietic microenvironment in vivo. To determine the capacity of either subpopulation to support long-term multi-lineage reconstituting HSCs, we fractionated BM stromal cells into either the LinNEGPDGFRαβPOSCD105POS and LINNEGPDGFRαβPOSCD105LOW/- populations and tested their capacity to support LT-HSC by co-culturing each population with either 1 or 10 HSCs for 10 days. Following the 10 day co-culture period, both populations supported transplantable HSCs from 10 cells/well co-cultures demonstrating high levels of donor repopulation with an average of 65+23.6% chimerism from CD105POS co-cultures and 49.3+19.5% chimerism from the CD105NEG co-cultures. However, we observed a significant difference when mice were transplanted with the progeny of a single co-cultured HSC. In these experiments, CD105POS co-cultures (100%) demonstrated long-term multi- lineage reconstitution, while only 4 of 8 mice (50%) from CD105NEG -single HSC co-cultures demonstrated long-term reconstitution, suggesting a more limited expansion of functional stem cells. Taken together, these results demonstrate that the PDGFRαβCD105POS stromal cell subpopulation is distinguished by a unique capacity to support the expansion of long-term reconstituting HSCs in vitro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study sought to understand the elements affecting the success or failure of strategic repositioning efforts by academic medical centers (AMC). The research question was: What specific elements in the process appear to be most important in determining the success or failure of an AMC.s strategic repositioning? Where success is based on the longterm sustainability of the new position.^ "An organization's strategic position is its perceptual location relative to others" (Gershon, 2003). Hence, strategic repositioning represents a shift from one strategic position within an environment to another (H. Mintzberg, 1987a). A deteriorating value proposition coupled with an unsustainable national health care financing system is forcing AMCs to change their strategic position. Where the value proposition is defined as the health outcome per dollar spent. ^ AMCs are of foundational importance to our health care system. They educate our new physicians, generate significant scientific breakthroughs, and care for our most difficult patients. Yet, their strategic, financial and business acumen leaves them particularly vulnerable in a changing environment. ^ After a literature review revealed limited writing on this subject, the research question was addressed using three separate but parallel exploratory case study inquiries of AMCs that recently underwent a strategic repositioning. Participating in the case studies were the Baylor College of Medicine, the University of Texas M. D. Anderson Cancer Center, and the University of Texas Medical Branch.^ Each case study consisted of two major research segments; a thorough documentation review followed by semi-structured interviews of selected members of their governance board, executive and faculty leadership teams. While each case study.s circumstances varied, their response to the research question, as extracted through thematic coding and analysis of the interviews, had a high degree of commonality.^ The results identified managing the strategic risk surrounding the repositioning and leadership accountability as the two foundational elements of success or failure. Metrics and communication were important process elements. They both play a major role in managing the strategic repositioning risk communication loop. Sustainability, the final element, was the outcome sought.^ Factors leading to strategic repositioning included both internal and external pressures and were primarily financial or mission based. Timing was an important consideration as was the selection of the strategic repositioning endpoint.^ In conclusion, a framework for the strategic repositioning of AMCs was offered that integrates the findings of this study; the elements of success, the factors leading to strategic repositioning, and the risk communication loop. ^