3 resultados para Initial costs
em DigitalCommons@The Texas Medical Center
Resumo:
Developing countries are heavily burdened by limited access to safe drinking water and subsequent water-related diseases. Numerous water treatment interventions combat this public health crisis, encompassing both traditional and less-common methods. Of these, water disinfection serves as an important means to provide safe drinking water. Existing literature discusses a wide range of traditional treatment options and encourages the use of multi-barrier approaches including coagulation-flocculation, filtration, and disinfection. Most sources do not delve into approaches specifically appropriate for developing countries, nor do they exclusively examine water disinfection methods.^ The objective of this review is to focus on an extensive range of chemical, physio-chemical, and physical water disinfection techniques to provide a compilation, description and evaluation of options available. Such an objective provides further understanding and knowledge to better inform water treatment interventions and explores alternate means of water disinfection appropriate for developing countries. Appropriateness for developing countries corresponds to the effectiveness of an available, easy to use disinfection technique at providing safe drinking water at a low cost.^ Among chemical disinfectants, SWS sodium hypochlorite solution is preferred over sodium hypochlorite bleach due to consistent concentrations. Tablet forms are highly recommended chemical disinfectants because they are effective and very easy to use, but also because they are stable. Examples include sodium dichloroisocyanurate, calcium hypochlorite, and chlorine dioxide, which vary in cost depending on location and availability. Among physio-chemical disinfection options, electrolysis which produces mixed oxidants (MIOX) provides a highly effective disinfection option with a higher upfront cost but very low cost over the long term. Among physical disinfection options, solar disinfection (SODIS) applications are effective, but they treat only a fixed volume of water at a time. They come with higher initial costs but very low on-going costs. Additional effective disinfection techniques may be suitable depending on the location, availability and cost.^
Resumo:
Emergency Departments (EDs) and Emergency Rooms (ERs) are designed to manage trauma, respond to disasters, and serve as the initial care for those with serious illnesses. However, because of many factors, the ED has become the doorway to the hospital and a “catch-all net” for patients including those with non-urgent needs. This increase in the population in the ED has lead to an increase in wait times for patients. It has been well documented that there has been a constant and consistent rise in the number of patients that frequent the ED (National Center for Health Statistics, 2002); the wait time for patients in the ED has increased (Pitts, Niska, Xu, & Burt, 2008); and the cost of the treatment in the ER has risen (Everett Clinic, 2008). Because the ED was designed to treat patients who need quick diagnoses and may be in potential life-threatening circumstances, management of time can be the ultimate enemy. If a system was implemented to decrease wait times in the ED, decrease the use of ED resources, and decrease costs endured by patients seeking care, better outcomes for patients and patient satisfaction could be achieved. The goal of this research was to explore potential changes and/or alternatives to relieve the burden endured by the ED. In order to explore these options, data was collected by conducting one-on-one interviews with seven physicians closely tied to a Level 1 ED (Emergency Room physicians, Trauma Surgeons and Primary Care physicians). A qualitative analysis was performed on the responses of one-on-one interviews with the aforementioned physicians. The interviews were standardized, open-ended questions that probe what makes an effective ED, possible solutions to improving patient care in the ED, potential remedies for the mounting problems that plague the ED, and the feasibility of bringing Primary Care Physicians to the ED to decrease the wait times experienced by the patient. From the responses, it is clear that there needs to be more research in this area, several areas need to be addressed, and a variety of solutions could be implemented. The most viable option seems to be making the ED its own entity (similar to the clinic or hospital) that includes urgent clinics as a part of the system, in which triage and better staffing would be the most integral part of its success.^
Resumo:
A sample of 157 AIDS patients 17 years of age or over were followed for six months from the date of hospital discharge to derive average total cost of medical care, utilization and satisfaction with care. Those referred for home care follow-up after discharge from the hospital were compared with those who did not receive home care.^ The average total cost of medical care for all patients was $34,984. Home care patient costs averaged \$29,614 while patients with no home care averaged $37,091. Private hospital patients had average costs of \$50,650 compared with $25,494 for public hospital patients. Hospital days for the six months period averaged 23.9 per patient for the no home care group and 18.5 days for home care group. Patient satisfaction with care was higher in the home care group than no home care group, with a mean score of 68.2 compared with 61.1.^ Other health services information indicated that 98% of the private hospital patients had insurance while only 2% of public hospital patients had coverage. The time between the initial date of diagnosis with AIDS and admission to the study was longer for private hospital patients, survival time over the study period was shorter, and the number of hospitalizations prior to entering the study was higher for private hospital patients. These results suggest that patients treated in the private hospital were sicker than public hospital patients, which may explain their higher average total cost. Statistical analyses showed that cost and utilization have no significant relationship with home care or no home care when controlling for indicators of the severity of illness and treatment in public or private hospital.^ In future studies, selecting a matched group of patients from the same hospital and following them for nine months to one year would be helpful in making a more realistic comparison of the cost effectiveness of home care. ^