5 resultados para Initial Unloading Slope

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In previous studies, we found that the improved contractile ability of cardiac myocytes from patients who have had left ventricular assist device (LVAD) support was due to a number of beneficial changes, most notably in calcium handling (increased sarcoplasmic reticulum calcium binding and uptake), improved integrity of cell membranes due to phospholipid reconstruction (reduced lysophospholipid content), and an upregulation of adrenoreceptors (increased adrenoreceptor numbers). However, in the case presented here, there was no increase in adrenoreceptor number, which is something that we usually find in core tissue at the time of LVAD removal or organ transplantation; also, there was no homogeneous postassist device receptor distribution. However, the patient was well maintained for 10 months following LVAD implantation, until a donor organ was available, regardless of the lack of adrenoreceptor improvement. We conclude from these studies that cardiac recovery is the result of the initiation of multiple repair mechanisms, and that the lack of expected changes, in this case increased adrenoreceptors, is not always an accurate indicator of anticipated outcome. We suggest that interventions and strategies have to consider multiple, beneficial changes due to unloading and target a number of biochemical and structural areas to produce improvement, even if not all of these improvements occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation was written in the format of three journal articles. Paper 1 examined the influence of change and fluctuation in body mass index (BMI) over an eleven-year period, on changes in serum lipid levels (total, HDL, and LDL cholesterol, triglyceride) in a population of Mexican Americans with type 2 diabetes. Linear regression models containing initial lipid value, BMI and age, BMI change (slope of BMI), and BMI fluctuation (root mean square error) were used to investigate associations of these variables with change in lipids over time. Increasing BMI over time was associated with gains in total and LDL cholesterol and triglyceride levels in women. Fluctuation of BMI was not associated with detrimental lipid profiles. These effects were independent of age and were not statistically significant in men. In Mexican-American women with type 2 diabetes, weight reduction is likely to result in more favorable levels of total and LDL cholesterol and triglyceride, without concern for possible detrimental effects of weight fluctuation. Weight reduction may not be as effective in men, but does not appear to be harmful either. ^ Paper 2 examined the associations of upper and total body fat with total cholesterol, HDL and LDL cholesterol, and triglyceride levels in the same population. Multilevel analysis was used to predict serum lipid levels from total body fat (BMI and triceps skinfold) and upper body fat (subscapular skinfold), while controlling for the effects of sex, age and self-correlations across time. Body fat was not strikingly associated with trends in serum lipid levels. However, upper body fat was strongly associated with triglyceride levels. This suggests that loss of upper body fat may be more important than weight loss in management of the hypertriglyceridemia commonly seen in type 2 diabetes. ^ Paper 3 was a review of the literature reporting associations between weight fluctuation and lipid levels. Few studies have reported associations between weight fluctuation and total, LDL, and HDL cholesterol and triglyceride levels. The body of evidence to date suggests that weight fluctuation does not strongly influence levels of total, LDL and HDL cholesterol and triglyceride. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. The HIV/AIDS disease burden disproportionately affects minority populations, specifically African Americans. While sexual risk behaviors play a role in the observed HIV burden, other factors including gender, age, socioeconomics, and barriers to healthcare access may also be contributory. The goal of this study was to determine how far down the HIV/AIDS disease process people of different ethnicities first present for healthcare. The study specifically analyzed the differences in CD4 cell counts at the initial HIV-1 diagnosis with respect to ethnicity. The study also analyzed racial differences in HIV/AIDS risk factors. ^ Methods. This is a retrospective study using data from the Adult Spectrum of HIV Disease (ASD), collected by the City of Houston Department of Health. The ASD database contains information on newly reported HIV cases in the Harris County District Hospitals between 1989 and 2000. Each patient had an initial and a follow-up report. The extracted variables of interest from the ASD data set were CD4 counts at the initial HIV diagnosis, race, gender, age at HIV diagnosis and behavioral risk factors. One-way ANOVA was used to examine differences in baseline CD4 counts at HIV diagnosis between racial/ethnic groups. Chi square was used to analyze racial differences in risk factors. ^ Results. The analyzed study sample was 4767. The study population was 47% Black, 37% White and 16% Hispanic [p<0.05]. The mean and median CD4 counts at diagnosis were 254 and 193 cells per ml, respectively. At the initial HIV diagnosis Blacks had the highest average CD4 counts (285), followed by Whites (233) and Hispanics (212) [p<0.001 ]. These statistical differences, however, were only observed with CD4 counts above 350 [p<0.001], even when adjusted for age at diagnosis and gender [p<0.05]. Looking at risk factors, Blacks were mostly affected by intravenous drug use (IVDU) and heterosexuality, whereas Whites and Hispanics were more affected by male homosexuality [ p<0.05]. ^ Conclusion. (1) There were statistical differences in CD4 counts with respect to ethnicity, but these differences only existed for CD4 counts above 350. These differences however do not appear to have clinical significance. Antithetically, Blacks had the highest CD4 counts followed by Whites and Hispanics. (2) 50% of this study group clinically had AIDS at their initial HIV diagnosis (median=193), irrespective of ethnicity. It was not clear from data analysis if these observations were due to failure of early HIV surveillance, HIV testing policies or healthcare access. More studies need to be done to address this question. (3) Homosexuality and bisexuality were the biggest risk factors for Whites and Hispanics, whereas for Blacks were mostly affected by heterosexuality and IVDU, implying a need for different public health intervention strategies for these racial groups. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In regression analysis, covariate measurement error occurs in many applications. The error-prone covariates are often referred to as latent variables. In this proposed study, we extended the study of Chan et al. (2008) on recovering latent slope in a simple regression model to that in a multiple regression model. We presented an approach that applied the Monte Carlo method in the Bayesian framework to the parametric regression model with the measurement error in an explanatory variable. The proposed estimator applied the conditional expectation of latent slope given the observed outcome and surrogate variables in the multiple regression models. A simulation study was presented showing that the method produces estimator that is efficient in the multiple regression model, especially when the measurement error variance of surrogate variable is large.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative real-time polymerase chain reaction (qPCR) is a sensitive gene quantitation method that has been widely used in the biological and biomedical fields. The currently used methods for PCR data analysis, including the threshold cycle (CT) method, linear and non-linear model fitting methods, all require subtracting background fluorescence. However, the removal of background fluorescence is usually inaccurate, and therefore can distort results. Here, we propose a new method, the taking-difference linear regression method, to overcome this limitation. Briefly, for each two consecutive PCR cycles, we subtracted the fluorescence in the former cycle from that in the later cycle, transforming the n cycle raw data into n-1 cycle data. Then linear regression was applied to the natural logarithm of the transformed data. Finally, amplification efficiencies and the initial DNA molecular numbers were calculated for each PCR run. To evaluate this new method, we compared it in terms of accuracy and precision with the original linear regression method with three background corrections, being the mean of cycles 1-3, the mean of cycles 3-7, and the minimum. Three criteria, including threshold identification, max R2, and max slope, were employed to search for target data points. Considering that PCR data are time series data, we also applied linear mixed models. Collectively, when the threshold identification criterion was applied and when the linear mixed model was adopted, the taking-difference linear regression method was superior as it gave an accurate estimation of initial DNA amount and a reasonable estimation of PCR amplification efficiencies. When the criteria of max R2 and max slope were used, the original linear regression method gave an accurate estimation of initial DNA amount. Overall, the taking-difference linear regression method avoids the error in subtracting an unknown background and thus it is theoretically more accurate and reliable. This method is easy to perform and the taking-difference strategy can be extended to all current methods for qPCR data analysis.^