6 resultados para Inhibit fungal

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Promotion of remyelination is an important therapeutic strategy to facilitate functional recovery after traumatic spinal cord injury (SCI). Transplantation of neural stem cells (NSCs) or oligodendrocyte precursor cells (OPCs) has been used to enhance remyelination after SCI. However, the microenvironment in the injured spinal cord is inhibitory for oligodendrocyte (OL) differentiation of NSCs or OPCs. Identifying the signaling pathways that inhibit OL differentiation in the injured spinal cord could lead to new therapeutic strategies to enhance remyelination and functional recovery after SCI. In the present study, we show that reactive astrocytes from the injured rat spinal cord or their conditioned media inhibit OL differentiation of adult OPCs with concurrent promotion of astrocyte differentiation. The expression of bone morphogenetic proteins (BMP) is dramatically increased in the reactive astrocytes and their conditioned media. Importantly, blocking BMP activity by BMP receptor antagonist, noggin, reverse the effects of active astrocytes on OPC differentiation by increasing the differentiation of OL from OPCs while decreasing the generation of astrocytes. These data indicate that the upregulated bone morphogenetic proteins in the reactive astrocytes are major factors to inhibit OL differentiation of OPCs and to promote its astrocyte differentiation. These data suggest that manipulation of BMP signaling in the endogenous or grafted NSCs or OPCs may be a useful therapeutic strategy to increase their OL differentiation and remyelination and enhance functional recovery after SCI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inhibition of local host immune reactions is one mechanism contributing to tumor progression. To determine if alterations in local immune functioning occur during colon carcinogenesis, a model mucosal immune response, type I hypersensitivity against the intestinal parasite Trichinella spiralis, was first characterized in normal mice and then examined during experimental colon carcinogenesis. Segments of sensitized colon mounted in Ussing chambers and challenged with T. spiralis-derived antigen resulted in a rise in short-circuit current ($\rm\Delta I\sb{sc}$) that was antigen-specific and inhibited by furosemide, implicating epithelial Cl$\sp-$ secretion as the ionic mechanism. The immune-regulated Cl$\sp-$ secretion by colonic epithelial cells required the presence of mast cells with surface IgE. Inhibition of potential anaphylactic mediators with various pharmacological agents in vitro implicated prostaglandins and leukotrienes as the principal mediators of the antigen-induced $\rm\Delta I\sb{sc}$, with 5-hydroxytryptamine also playing a role. Distal colon from immune mice fed an aspirin-containing diet (800 mg/kg powdered diet) ad libitum for 6 wk had a decreased response to antigen, confirming the major role of prostaglandins in generating the colonic I$\sb{\rm sc}$. To determine the effects of early stages of colon carcinogenesis on this mucosal immune response, mice were immunized with T. spiralis 1 day after or 8 wk prior to the first of 6 weekly injections of the procarcinogen 1,2-dimethylhydrazine (DMH). Responsiveness to antigenic challenge was suppressed in the distal colon 4-6 wk after the final injection of DMH. One injection of DMH was not sufficient to inhibit antigen responsiveness. The colonic epithelium remained sensitive to direct stimulation by exogenous Cl$\sp-$ secretagogues. Decreased antigen-induced $\rm\Delta I\sb{sc}$ in the distal colon was not due to systemic immune suppression by DMH, as the proximal colon and jejunum maintained responsiveness to antigen. Also, rejection of a secondary T. spiralis infection from the small intestine was not altered. Tumors eventually developed 25-30 wk after the final injection of DMH only in the distal portions of the colon. These results suggest that early stages of DMH-induced colon carcinogenesis manipulate the microenvironment such that mucosal immune function, as measured by immune-regulated Cl$\sp-$ secretion, is suppressed in the distal colon, but not in other regions of the gut. Future elucidation of the mechanisms by which this localized inhibition of immune-mediated ion transport occurs may provide possible clues to the microenvironmental changes necessary for tumor progression in the distal colon. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of indoor environmental factors, including bioaerosol or aeroallergen concentrations have been identified as exacerbators for asthma and allergenic conditions of the respiratory system. People generally spend 90% to 95% of their time indoors. Therefore, understanding the environmental factors that affect the presence of aeroallergens indoors as well as outdoors is important in determining their health impact, and in identifying potential intervention methods. This study aimed to assess the relationship between indoor airborne fungal spore concentrations and indoor surface mold levels, indoor versus outdoor airborne fungal spore concentrations and the effect of previous as well as current water intrusion. Also, the association between airborne concentration of indoor fungal spores and surface mold levels and the age of the housing structure were examined. Further, the correlation between indoor concentrations of certain species was determined as well. ^ Air and surface fungal measurements and related information were obtained from a Houston-area data set compiled from visits to homes filing insurance claims. During the sampling visit these complaint homes exhibited either visible mold or a combination of visible mold and water intrusion problems. These data were examined to assess the relationships between the independent and dependent variables using simple linear regression analysis, and independent t-tests. To examine the correlation between indoor concentrations of certain species, Spearman correlation coefficients were used. ^ There were 126 houses sampled, with spring, n=43 (34.1%), and winter, n=42 (33.3%), representing the seasons with the most samples. The summer sample illustrated the highest geometric mean concentration of fungal spores, GM=5,816.5 relative to winter, fall and spring (GM=1,743.4, GM=3,683.5 and GM=2,507.4, respectively). In all seasons, greater concentrations of fungal spores were observed during the cloudy weather conditions. ^ The results indicated no statistically significant association between outdoor total airborne fungal spore concentration and total living room airborne fungal spore concentration (β = 0.095, p = 0.491). Second, living room surface mold levels were not associated with living room airborne fungal spore concentration, (β= 0.011, p = 0.669). Third, houses with and without previous water intrusion did not differ significantly with respect to either living room (t(111) = 0.710, p = 0.528) or bedroom (t(111) =1.673, p = 0.162) airborne fungal spore concentrations. Likewise houses with and without current water intrusion did not differ significantly with respect to living room (t(109)=0.716, p = 0.476) or bedroom (t(109) = 1.035, p = 0.304) airborne fungal spore concentration. Fourth, houses with and without current water intrusion did not differ significantly with respect to living room (χ 2 (5) = 5.61, p = 0.346), or bedroom (χ 2 (5) = 1.80, p = 0.875) surface mold levels. Fifth, the age of the house structure did not predict living room (β = 0.023, p = 0.102) and bedroom (β = 0.023, p = 0.065) surface mold levels nor living room (β = 0.002, p = 0.131) and bedroom (β = 0.001, p = 0.650) fungal spore airborne concentration. Sixth, in houses with visually observed mold growth there was statistically significant differences between the mean living room concentrations and mean outdoor concentrations for Cladosporium (t (107) = 11.73, p < 0.0001), Stachybotrys (t (106)=2.288, p = 0.024, and Nigrosporia (t (102) = 2.267, p = 0.025). Finally, there was a significant correlation between several living room fungal species pairs, namely, Cladosporium and Stachybotrys (r = 0.373, p <0.01, n=65), Curvularia and Aspergillus/Penicillium (r = 0.205, p < 0.05, n= 111)), Curvularia and Stachybotrys (r = 0.205, p < 0.05, n=111), Nigrospora and Chaetomium (r = 0.254, p < 0.01, n=105) and Stachybotrys and Nigrospora (r = 0.269, p < 0.01, n=105). ^ This study has demonstrated several positive findings, i.e., significant pairwise correlations of concentrations of several fungal species in living room air, and significant differences between indoor and outdoor concentrations of three fungal species in homes with visible mold. No association was observed between indoor and outdoor fungal spore concentrations. Neither living room nor bedroom airborne spore concentrations and surface mold levels were related to the age of the house or to water intrusion, either previous or current. Therefore, these findings suggest the need for evaluating additional parameters, as well as combinations of factors such as humidity, temperature, age of structure, ventilation, and room size to better understand the determinants of airborne fungal spore concentrations and surface mold levels in homes. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glioblastoma multiforme is the most common form of brain cancer that presents patients with a poor prognosis that has remained unchanged over the past few decades. The tumor suppressor phosphatase PTEN antagonizes one of the major oncogenic pathways involved in the progression of glioblastoma, and is frequently deleted in this cancer type. Contrary to our expectations, we found that most glioblastoma cells expressing endogenous PTEN also harbor basal PI-3K/AKT activation mainly attributable to impaired PTEN membrane localization. This alteration correlated with a shift of the adaptor protein NHERF1, which contributes to PTEN membrane recruitment in normal cells, from the membrane to the cytoplasm. In cells expressing membrane-localized NHERF1, only simultaneous PTEN and NHERF1 depletion achieved AKT activation, suggesting the involvement of additional PI-3K/AKT suppressor regulated by NHERF1. We identified these novel interactors of NHERF1 as the PHLPP1 and PHLPP2 phosphatases. ^ NHERF1 directly interacted and recruited both PHLPP proteins to the membrane and, through both NHERF1 PDZ domains, assembled ternary complexes consisting of PTEN-NHERF1-PHLPP. Only simultaneous depletion of PTEN and PHLPP1 significantly activated AKT and increased proliferation in cells with membrane-localized NHERF1. Analysis of glioblastoma human tumors revealed frequent loss of membrane-localized NHERF1. On the other hand, targeting of NHERF1 to the membrane achieved suppression of AKT and cell proliferation. Our findings reveal a novel mechanism for PI-3K/AKT regulation by the synergistic cooperation between two important tumor suppressors, PTEN and PHLPP, via the scaffold protein NHERF1. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. It is estimated that hospitals spend between 28 and 33 billion dollars per year as a result of hospital-acquired infections. (Scott, 2009) The costs continue to rise despite the guidance and controls provided by hospital infection control staff to reduce patient exposures to fungal spores and other infectious agents. With all processes and controls in place, the vented elevator shaft represents an unprotected opening from the top of the building to the lower floors. The hypothesis for this prospective study is that there is a positive correlation between the number of Penicillium/Aspergillus-like spores, Cladosporium, ascospores, basidiospores in spores/m3 as individual spore categories found in the hoistway vent of an elevator shaft and the levels of the same spores, sampled near-simultaneously in the outdoor intake of the elevator shaft. Specific aims of this study include determining if external Penicillium/Aspergillus-like spores are entering the healthcare facility via the elevator shaft and hoistway vents. Additional aims include determining levels of Penicillium/Aspergillus-like spores outdoors, in the elevator shafts, and indoors in areas possibly affected by elevator shaft air; and, finally, to evaluate whether any effect is observed due to the installation of a hoistway vent damper, installed serendipitously during this study. ^ Methods. Between April 2010 and September 2010, a total of 3,521 air samples were collected, including 363 spore trap samples analyzed microscopically for seven spore types, and polymerase chain reaction analyses on 254 air samples. 2178 particle count measurements, 363 temperature readings and 363 relative humidity readings were also obtained from 7 different locations potentially related to the path of air travel inside and near a centrally-located and representative elevator shaft. ^ Results. Mean Penicillium/Aspergillus-like spore values were higher outside the building (530 spores/m3 of air) than inside the hoistway (22.8 spores/m3) during the six month study. Mean values inside the hospital were lower than outside throughout the study, ranging from 15 to 73 spores/m3 of air. Mean Penicillium/Aspergillus-like spore counts inside the hoistway decreased from 40.1 spores/m3 of air to 9 spores/m3 of air following the installation of a back draft damper between the outside air and the elevator shaft. Comparison of samples collected outside the building and inside the hoistway vent prior to installing the damper indicated a strong positive correlation (Spearman's Rho=0.8008, p=0.0001). The similar comparison following the damper installation indicated a moderate non-significant inverse correlation (Spearman's rho = −0.2795, p=0.1347). ^ Conclusion. Elevator shafts are one pathway for mold spores to enter a healthcare facility. A significant correlation was detected between spores and particle counts inside the hoistway and outside prior to changes in the ventilation system. The insertion of the back draft damper appeared to lower the spore counts inside the hoistway and inside the building. The mold spore counts in air outside the study building were higher in the period following the damper installation while the levels inside the hoistway and hospital decreased. Cladosporium and Penicillium/Aspergillus -like spores provided a method for evaluating indoor air quality as a natural tracer from outside the building to inside the building. Ascospores and basidiospores were not a valuable tracer due to low levels of detection during this study. ^ Installation of a back draft damper provides additional protection for the indoor environment of a hospital or healthcare facility, including in particular patients who may be immunocompromised. Current design standards and references do not require the installation of a back draft damper, but evaluation of adding language to relevant building codes should be considered. The data indicate a reduction in levels of Penicillium/Aspergillus -like spores, particle counts and a reduction in relative humidity inside of the elevator shaft after damper installation.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dictyostelium, a soil amoeba, is able to develop from free-living cells to multicellular fruiting bodies upon starvation using extracellular cAMP to mediate cell-cell communication, chemotaxis and developmental gene expression. The seven transmembrane G protein-coupled cAMP receptor-1 (cAR1) mediated responses, such as the activation of adenylyl cyclase and guanylyl cyclase, are transient, due to the existence of poorly understood adaptation mechanisms. For this dissertation, the powerful genetics of the Dictyostelium system was employed to study the adaptation mechanism of cAR1-mediated cAMP signaling as well as mechanisms intrinsic to cAR1 that regulate its activation. ^ We proposed that constitutively active cAR1 would cause constant adaptation, thus inhibiting downstream pathways that are essential for aggregation and development. Therefore, a screen for dominant negative cAR1 mutants was undertaken to identify constitutively active receptor mutants. Three dominant negative cAR1 mutants were identified. All appear to be constitutively active receptor mutants because they are constitutively phosphorylated and possess high affinity for cAMP. Biochemical studies showed that these mutant receptors prevented the activation of downstream effectors, including adenylyl and guanylyl cyclases. In addition, these cells also were defective in cAMP chemotaxis and cAR1-mediated gene expression. These findings suggest that the mutant receptors block development by constantly activating multiple adaptation pathways. ^ Sequence analysis revealed that these mutations (I104N, L100H) are clustered in a conserved region of the third transmembrane helix (TM3) of cAR1. To investigate the role of this region in receptor activation, one of these residues, I104, was mutated to all the other 19 possible amino acids. We found that all but the most conservative substitutions increase the receptor's affinity about 20- to 70-fold. However, only highly polar substitutions of I104, particularly basic residues, resulted in receptors that are constitutively phosphorylated and dominantly inhibit development, suggesting that highly polar substitutions not only disrupt an interaction constraining the receptor in its low-affinity, inactive state but also promote an additional conformational change that resembles the ligand-bound conformation. Our findings suggest that I104 plays a specific role in constraining the receptor in its inactive state and that substituting it with highly polar residues results in constitutive activation. ^