2 resultados para Inheritance and succession--Massachusetts
em DigitalCommons@The Texas Medical Center
Resumo:
Hemophilia is a hereditary bleeding disorder which requires lifelong specialized care. A network of Hemophilia Treatment Centers (HTCs) exists to meet the medical needs of patients affected by hemophilia. Genetic counseling services are an integral part of the HTC model of care; however, many HTCs do not have genetic counselors on staff. As a result, the duty to provide these services must fall to other healthcare providers within the HTC. To assess the knowledge and attitudes of these providers we developed a 49 question survey that was distributed electronically to hematologists and nurses at U.S. HTCs. The survey consisted of a three sections: demographic information, knowledge of hemophilia genetics, and attitudes towards genetic services. A total of 111 complete responses were received and analyzed. The average knowledge score among all participants was 74.8% with a total of 81 participants receiving a passing score of 70% or above. Thirty participants scored below 70% in the knowledge section. In general, attitude scores were high indicating that the majority of hematologists and nurses in HTCs feel confident in their ability to provide genetic counseling services. Over 90% of participants reported that they have some form of access to genetic counseling services at their center. Hematologists and nurses practicing in U.S. HTCs demonstrate sufficient knowledge of the genetics of hemophilia, and they generally feel confident in their ability to provide genetic counseling services to their patients. While their knowledge is sufficient, the average knowledge score was lower than 75%. Certain questions covering new genetic technologies and testing practices were more commonly missed than questions asking about more basic aspects of hemophilia genetics, such as inheritance and carrier testing. Finally, many clinics report having access to a counselor, but it is oftentimes a hematologist or nurse who is providing genetic counseling services to patients. Given the inconsistency in knowledge among providers coupled with the high confidence in one’s ability to counsel patients, it leaves room to question whether information about the genetics of hemophilia is being communicated to patients in the most appropriate and accurate manner.
Resumo:
Retinitis pigmentosa (RP) is a name given to a group of inherited retinal dystrophies that lead to progressive photoreceptor degeneration, and thus, visual impairment. It is evident at both the clinical and the molecular level that these are heterogeneous disorders, with wide variation in severity, mode of inheritance, and phenotype. The genetics of RP are not simple; the disease can be inherited in dominant, recessive, X-linked, and digenic modes. Autosomal dominant RP (adRP) results from mutations in at least ten mapped loci, but there may be dozens of genetic loci where mutations can cause RP. To date, there are over a hundred genes known to cause retinal degenerative diseases, and less than half of these have been cloned (RetNet). Among the dozens of retinitis pigmentosa loci known to exist, only a few have been identified and the remainders are inferred from linkage studies. Today, the genes for seven of the twelve-adRP loci have been identified, and these are rhodopsin, peripherin/RDS, NRL, ROM1, CRX, RP13 and RP1. My research projects involved a combination of the continued search for genes involved in retinal dystrophies, as well the investigation into the role of peripherin/RDS and RP1 in the disease etiology of autosomal dominant RP. ^ Most of the mutations leading to inherited retinal disorders have been identified in predominately retina expressed genes like rhodopsin, peripherin/RDS, and RP1. Expressed sequence tags (ESTs) that were retina-specific were culled from sequence databases and, together with laboratory analysis, were analyzed as potential candidate genes for retinal dystrophies. Thirteen of the fifty-five identified retina-specific ESTs mapped to within candidate regions for inherited retinopathies. One of these is RP1L1, a homologue of RP1 and a potential cause of adRP. ^ Once a disease-associated gene has been identified, elucidating the role of that gene in the visual process is essential for understanding what happens when the process is defective as it is in adRP. My next projects involved investigating the role of a novel 5′ donor +3 splice site mutation on the mRNA of peripherin/RDS in adRP affected individuals, and comparative sequencing in RP1 to define conserved regions of the protein. Comparative sequencing is a powerful way to delineate critical regions of a sequence because different regions of a gene have different functions, and each region is subject to different levels of functional or structural constraints. Establishing a framework of conserved domains is beneficial not only for structural or functional studies, but can also aid in determining the potential effects of mutations. With the completion of sequencing of human genome, and other organisms such as Saccharomyces cerevisiae, Caenorhabditis elegans , and Drosophila, the facility of comparative sequencing will only increase in the future. Comparative sequencing has already become an established procedure for pinpointing conserved regions of a protein, and is an efficient way to target regions of a protein for experimental and/or evolutionary analysis. ^