16 resultados para Infrapatellar Fat Pad
em DigitalCommons@The Texas Medical Center
Resumo:
EphA2, also known as ECK (epithelial cell kinase), is a transmembrane receptor tyrosine kinase that is commonly over-expressed in cancers such as those of the prostate, colon, lung, and breast. For breast cancers, EphA2 overexpression is most prominent in the ER-negative subtype, and is associated with a higher rate of lung metastasis. Studies conducted to demonstrate the role of EphA2 in a non-cancerous environment have shown that it is very important in developmental processes, but not in normal adult tissues. These results make EphA2 a prospective therapeutic target since new therapies are needed for the more aggressive ER-negative breast cancers. A panel of breast cancer cell lines was screened for expression of EphA2 by immunoblotting. Several of the overexpressing cell lines, including BT549, MDA-MB-231, and HCC 1954 were selected for experiments utilizing siRNA for transient knockdown and shRNA for stable knockdown. Targeted knockdown of EphA2 was measured using RT-PCR and immunoblotting techniques. Here, the functions of EphA2 in the process of metastasis have been elucidated using in vitro assays that indicate cancer cell metastatic potential and in vivo studies that reveal the effect of EphA2 on mammary fat pad tumor growth, vessel formation, and the effect of using EphA2-targeting siRNA on pre-established mammary fat pad tumors. A decrease in EphA2 expression both in vitro and in vivo correlated with reduced migration and experimental metastasis of breast cancer cells. Current work is being done to investigate the mechanism behind EphA2’s participation in some of these processes. These studies are important because they have contributed to understanding the role that EphA2 plays in the progression of breast cancers to a metastatic state.
Resumo:
INTRODUCTION: Once metastasis has occurred, the possibility of completely curing breast cancer is unlikely, particularly for the 30 to 40% of cancers overexpressing the gene for HER2/neu. A vaccine targeting p185, the protein product of the HER2/neu gene, could have therapeutic application by controlling the growth and metastasis of highly aggressive HER2/neu+ cells. The purpose of this study was to determine the effectiveness of two gene vaccines targeting HER2/neu in preventive and therapeutic tumor models. METHODS: The mouse breast cancer cell line A2L2, which expresses the gene for rat HER2/neu and hence p185, was injected into the mammary fat pad of mice as a model of solid tumor growth or was injected intravenously as a model of lung metastasis. SINCP-neu, a plasmid containing Sindbis virus genes and the gene for rat HER2/neu, and Adeno-neu, an E1,E2a-deleted adenovirus also containing the gene for rat HER2/neu, were tested as preventive and therapeutic vaccines. RESULTS: Vaccination with SINCP-neu or Adeno-neu before tumor challenge with A2L2 cells significantly inhibited the growth of the cells injected into the mammary fat or intravenously. Vaccination 2 days after tumor challenge with either vaccine was ineffective in both tumor models. However, therapeutic vaccination in a prime-boost protocol with SINCP-neu followed by Adeno-neu significantly prolonged the overall survival rate of mice injected intravenously with the tumor cells. Naive mice vaccinated using the same prime-boost protocol demonstrated a strong serum immunoglobulin G response and p185-specific cellular immunity, as shown by the results of ELISPOT (enzyme-linked immunospot) analysis for IFNgamma. CONCLUSION: We report herein that vaccination of mice with a plasmid gene vaccine and an adenovirus gene vaccine, each containing the gene for HER2/neu, prevented growth of a HER2/neu-expressing breast cancer cell line injected into the mammary fat pad or intravenously. Sequential administration of the vaccines in a prime-boost protocol was therapeutically effective when tumor cells were injected intravenously before the vaccination. The vaccines induced high levels of both cellular and humoral immunity as determined by in vitro assessment. These findings indicate that clinical evaluation of these vaccines, particularly when used sequentially in a prime-boost protocol, is justified.
Resumo:
Recent publications have questioned the origin of the MDA-MB-435 breast cancer cell line and have suggested that it is of melanocyte origin rather than breast epithelial origin. The data presented herein show unequivocally that MDA-MB-435 does express breast epithelial markers and produces milk-specific lipids. The data also indicated that MDA-MB-435 does express some melanocyte proteins but this expression occurs in the same MDA-MB-435 cells that express breast epithelial proteins. Although MDA-MB-435 does not strictly adhere to a breast lineage, it does retain breast specific markers and is thus valid as an experimental cell line in breast cancer studies. ^ Heregulinβ1 (HRGβ1) has been shown to both stimulate and inhibit breast tumorigenic and metasastasic phenotypes. Some studies used only the EGF-like domain of the extracellular domain of HRGβ1 while others used bacterially-expressed HRGβ1. Our in vitro data demonstrated that the full-length extracellular domain of human HRGβ1 reduced clonal growth of MDA-MB-435 breast cancer cells but stimulated apoptosis in MDA-MB-435 and MCF-7 breast cancer cells. In addition, mammalian-expressed HRGβ1 did not dramatically affect matrix metalloproteinase-9 activity but did inhibit cell motility of MDA-MB-435 and MCF-7 cells. Taken together, the in vitro data indicated that HRGβ1 inhibits metastasis-associated properties. ^ The in vivo data demonstrated that inducible expression of the full-length extracellular domain of human HRGβ1 in MDA-MB-435 cells reduced tumor volume and cell proliferation but increased apoptosis of cells injected at the mammary fat pad in nude mice. More importantly, HRGβ1 reduced the number of metastases observed by a spontaneous metastasis assay. Taken together, these data indicate that the full-length extracellular domain of human HRGβ1 has the net effect of inhibiting breast cancer metastasis. ^
Resumo:
Breast cancer is the most common cancer among women with approximately 180,000 new cases being diagnosed yearly in the United States (1). HER2/neu gene amplification and subsequent protein overexpression is found in 20–30% of breast cancer patients and can lead to the promotion of various metastasis-related properties (2–4) and/or resistance to cancer therapies such as chemotherapy and radiation (5). ^ The protein product of the HER2/neu gene, p185, is a proven target for immunological therapy. Recently, passive immunotherapy with the monoclonal antibody Trastuzumab® has validated an immunological approach to HER2/neu+ breast cancer. Immunity to HER2/ neu, when found in breast cancer patients, is of low magnitude. Vaccination-induced HER2/neu-specific antibodies and HER2/neu-specific cytotoxic T cells could result in long-lived immunity with therapeutic benefit. Many features of DNA vaccines and attenuated viral vectors may contribute to the efficacy of prime-boost vaccination. In particular, vaccines capable of eliciting strong cell-mediated immunity are thought to hold the greatest promise for control of cancer (6–9). ^ To optimize cellular immunization to HER2/neu in my study, the HER2/neu gene was presented to the immune system using a priming vector followed by a second vector used as the boost. In both animals and humans, priming with DNA and boosting with a poxviruses, vaccinia or canarypox appears to be particularly promising for induction of a broad immune responses (10). ^ I tested three gene vaccines encoding the HER2/neu gene: (1) a plasmid, SINCP, that contains part of the genome of Sindbis virus; (2) Viral Replicon Particles (VRP) of Venezuela Equine Encephalitis virus (VEE) and (3) E1/E2a-deleted human Type 5 Adenovirus. In SINCP and the VRP, the caspid and envelope genes of the virus were deleted and replaced with the gene for HER2/neu. SINCP-neu, VRP- neu and Adeno-neu when used alone were effective vaccines protecting healthy mice from challenge with a breast cancer cell line injected in the mammary fat pad or injected i.v. to induce experimental lung metastasis. However, SINCP-neu, VRP-neu or Adeno-neu when used alone were not able to prolong survival of mice in therapeutic models in which vaccination occurred after injection of a breast cancer cell line. ^ When the vaccines were combined in a mixed regimen of a SINCP- neu prime VRP-neu or Adeno-neu boost, there was a significant difference in tumor growth and survival in the therapeutic vaccine models. In vitro assays demonstrated that vaccination with each of the three vaccines induced IgG specific for p185, the gene product of HER2/neu, induced p185-specific T lymphocytes, as measured by tetramer analysis. Vaccination also induced intracellular INF-γ and a positive ELISPOT assay. These findings indicate that SINCP-neu, VRP-neu and Adeno-neu, used alone or in combination, may have clinical potential as adjuvant immunotherapy for the treatment of HER2/neu-expressing tumors. ^
Resumo:
Cyclin E, in complex with cyclin dependent kinase 2 (CDK2), is a positive regulator of G1 to S phase progression of the cell cycle. Deregulation of G1/S phase transition occurs in the majority of tumors. Cyclin E is overexpressed and post-translationally generates low molecular weight (LMW) isoforms in breast cancer, but not normal cells. Such alteration of cyclin E is linked to poor prognosis. Therefore, we hypothesized that the LMW isoforms of cyclin E provide a novel mechanism of cell cycle de-regulation in cancer cells. Insect cell expression system was used to explore the biochemical properties of the cyclin E isoforms. Non-tumorigenic (76NE6) and tumorigenic (T47D) mammary epithelial cells transfected with the cyclin E isoforms and breast tumor tissue endogenously expressing the LMW isoforms were used to study the biologic consequences of the LMW isoforms of cyclin E. All model systems studied show that the LMW forms (compared to full-length cyclin E) have increased kinase activity when partnered with CDK2. Increases in the percentage of cells in S phase and colony formation were also observed after overexpression of LMW compared to full-length cyclin E. The LMW isoforms of cyclin E utilize several mechanisms to attain their hyper-activity. They bind CDK2 more efficiently, and are resistant to inhibition by cyclin dependent kinase inhibitors (CKIs) as compared to full-length cyclin E. In addition, the LMW isoforms sequester the CKIs from full-length cyclin E abrogating the overall negative regulation of cyclin E. Despite their correlation with adverse biological consequences, the direct role of the LMW isoforms of cyclin E in mediating tumorigenesis remained unanswered. Subsequent to LMW cyclin E expression in 76NE6 cells, they lose their ability to enter quiescence and exhibit genomic instability, both characteristic of a tumor cell phenotype. Furthermore, injection of 76NE6 cells overexpressing each of the cyclin E isoforms into the mammary fat pad of nude mice revealed that the LMW isoforms of cyclin E yield tumors, whereas the full-length cyclin E does not. In conclusion, the LMW isoforms of cyclin E utilize several mechanisms to acquire a hyperactive phenotype that results in deregulation of the cell cycle and initiates the tumorigenic process in otherwise non-transformed mammary epithelial cells. ^
Resumo:
Obesity and diabetes are frequently associated with cardiovascular disease. When a normal heart is subjected to brief/sublethal repetitive ischemia and reperfusion (I/R), adaptive responses are activated to preserve cardiac structure and function. These responses include but are not limited to alterations in cardiac metabolism, reduced calcium responsiveness, and induction of antioxidant enzymes. In a model of ischemic cardiomyopathy inducible by brief repetitive I/R, we hypothesized that dysregulation of these adaptive responses in diet-induced obese (DIO) mice would contribute to enhanced myocardial injury. DIO C57BL/6J mice were subjected to 15 min of daily repetitive I/R while under short-acting anesthesia, a protocol that results in the development of fibrotic cardiomyopathy. Cardiac lipids and candidate gene expression were analyzed at 3 days, and histology at 5 days of repetitive I/R. Total free fatty acids (FFAs) in the cardiac extracts of DIO mice were significantly elevated, reflecting primarily the dietary fatty acid (FA) composition. Compared with lean controls, cardiac FA oxidation (FAO) capacity of DIO mice was significantly higher, concurrent with increased expression of FA metabolism gene transcripts. Following 15 min of daily repetitive I/R for 3 or 5 days, DIO mice exhibited increased susceptibility to I/R and, in contrast to lean mice, developed microinfarction, which was associated with an exaggerated inflammatory response. Repetitive I/R in DIO mice was associated with more profound significant downregulation of FA metabolism gene transcripts and elevated FFAs and triglycerides. Maladaptive metabolic changes of FA metabolism contribute to enhanced myocardial injury in diet-induced obesity.
Resumo:
Obesity and diabetes are associated with increased fatty acid availability in excess of muscle fatty acid oxidation capacity. This mismatch is implicated in the pathogenesis of cardiac contractile dysfunction and also in the development of skeletal-muscle insulin resistance. We tested the hypothesis that 'Western' and high fat diets differentially cause maladaptation of cardiac- and skeletal-muscle fatty acid oxidation, resulting in cardiac contractile dysfunction. Wistar rats were fed on low fat, 'Western' or high fat (10, 45 or 60% calories from fat respectively) diet for acute (1 day to 1 week), short (4-8 weeks), intermediate (16-24 weeks) or long (32-48 weeks) term. Oleate oxidation in heart muscle ex vivo increased with high fat diet at all time points investigated. In contrast, cardiac oleate oxidation increased with Western diet in the acute, short and intermediate term, but not in the long term. Consistent with fatty acid oxidation maladaptation, cardiac power decreased with long-term Western diet only. In contrast, soleus muscle oleate oxidation (ex vivo) increased only in the acute and short term with either Western or high fat feeding. Fatty acid-responsive genes, including PDHK4 (pyruvate dehydrogenase kinase 4) and CTE1 (cytosolic thioesterase 1), increased in heart and soleus muscle to a greater extent with feeding a high fat diet compared with a Western diet. In conclusion, we implicate inadequate induction of a cassette of fatty acid-responsive genes, and impaired activation of fatty acid oxidation, in the development of cardiac dysfunction with Western diet.
Resumo:
Previous studies of normal children have linked body fat but not body fat distribution (BFD), to higher blood pressures, lipids, and insulin resistance (Berenson et al., 1988) BFD is a well-established risk factor for cardiovascular disease in adults (Björntorp, 1988). This study investigates the relation of BFD and serum lipids at baseline in children from Project HeartBeat!, a study of the growth and development of cardiovascular risk factors in 678 children in three cohorts measured initially at ages 8, 11, and 14 years. Initially, two of four indices of BFD were significantly related to the lipids: ratio of upper to lower body skinfolds (ln US:LS) and conicity (C Index). A factor analysis reduced the information in the serum lipids to two vectors: (1) total cholesterol + LDL-cholesterol and (2) HDL-cholesterol − triglycerides, which together accounted for 85% of the lipid variation. Using each serum lipid and vector as separate dependent variables, linear and quadratic regression models were constructed to examine the predictive ability of the two BFD variables, controlling for total body fat, gender, ethnicity (Black, non-Black) and maturation. Linear models provided an acceptable fit. Percent body fat (%BF) was a significant predictor in each and every lipid model, independent of age, maturation, or ethnicity (p ≤ 0.05). No BFD variable entered the equation for total or LDL-cholesterol, although there was a significant maturity by BFD interaction for LDL (ln US:LS was a significant predictor in more mature individuals). Both %BF and BFD (by way of Conicity) were significant predictors of HDL-cholesterol and triglycerides (p ≤ 0.01). All models were statistically significant at a high level (p ≤ 0.01), but adjusted R 2's for all models were low (0.05–0.15). Body fat distribution is a significant predictor of lipids in normal children, but secondarily to %BF, and for LDL-cholesterol in particular, the relation is dependent on maturity status. ^
Resumo:
This dissertation was written in the format of three journal articles. Paper 1 examined the influence of change and fluctuation in body mass index (BMI) over an eleven-year period, on changes in serum lipid levels (total, HDL, and LDL cholesterol, triglyceride) in a population of Mexican Americans with type 2 diabetes. Linear regression models containing initial lipid value, BMI and age, BMI change (slope of BMI), and BMI fluctuation (root mean square error) were used to investigate associations of these variables with change in lipids over time. Increasing BMI over time was associated with gains in total and LDL cholesterol and triglyceride levels in women. Fluctuation of BMI was not associated with detrimental lipid profiles. These effects were independent of age and were not statistically significant in men. In Mexican-American women with type 2 diabetes, weight reduction is likely to result in more favorable levels of total and LDL cholesterol and triglyceride, without concern for possible detrimental effects of weight fluctuation. Weight reduction may not be as effective in men, but does not appear to be harmful either. ^ Paper 2 examined the associations of upper and total body fat with total cholesterol, HDL and LDL cholesterol, and triglyceride levels in the same population. Multilevel analysis was used to predict serum lipid levels from total body fat (BMI and triceps skinfold) and upper body fat (subscapular skinfold), while controlling for the effects of sex, age and self-correlations across time. Body fat was not strikingly associated with trends in serum lipid levels. However, upper body fat was strongly associated with triglyceride levels. This suggests that loss of upper body fat may be more important than weight loss in management of the hypertriglyceridemia commonly seen in type 2 diabetes. ^ Paper 3 was a review of the literature reporting associations between weight fluctuation and lipid levels. Few studies have reported associations between weight fluctuation and total, LDL, and HDL cholesterol and triglyceride levels. The body of evidence to date suggests that weight fluctuation does not strongly influence levels of total, LDL and HDL cholesterol and triglyceride. ^
Resumo:
Purpose. This cross-sectional, observational study explored differences among groups staged for intent to decrease dietary fat intake in women with type 2 diabetes in relation to demographic, weight concern, physiological, and psychosocial variables. ^ Methods. A sample of 100 community-dwelling, English-speaking women, who were over age 30 and had type 2 diabetes for at least a year, was accessed through a culturally diverse endocrinology clinic. Subjects completed 7 self-report instruments: demographic sheet, with 11-point weight satisfaction scale; staging algorithm; fat intake (MEDFICTS); depression (CES-D); diabetes-specific dietary knowledge (ADKnowl), social support and self-efficacy scales (SE-Type 2). Physiological variables were abstracted from the medical record (HbA 1c, blood pressure, serum cholesterol and triglycerides). ^ Results. The women's average age was 57.69 years ( SD = 3.07); 50% were married. Subjects were well-educated ( M = 14 years; SD = 3.33), with average diabetes duration of 10.57 years (SD = 9.11), high body mass index (M = 35.72; SD = 8.36), low diabetes-specific dietary knowledge, low weight satisfaction, but in good diabetes control. Racial/ethnic composition was 44% non-Hispanic-White-American, 18% Hispanic-White-American, 15% non-Hispanic-African-American, 16% Hispanic-African-American and 5% other. Fat intake was low and differed by racial/ethnic demographics. The highest fat intake scores were for non-Hispanic-African-Americans (M = 53), followed by Hispanic-White-Americans (M = 51), non-Hispanic-White-Americans (M = 45), and Hispanic-African-Americans (M = 32), who had the lowest fat intake scores. ^ MANOVA analyses revealed no significant differences between stages of behavior change in relation to psychosocial or weight concern variables, age, education, HbA1c, or cholesterol levels. Single women were more likely to be in the three preaction stages (precontemplation, contemplation, and preparation); married women were equally distributed across stages (the preaction stages plus action and maintenance). African-American women (Hispanic and non-Hispanic) were more likely in contemplation and preparation. Triglycerides were higher in women in the action stage than contemplation or preparation. Systolic blood pressure was higher in action than preparation; diastolic blood pressure was higher in action than preaction. ^ Conclusions. Healthcare professionals should consider race, ethnicity, and marital status in client interactions. Dietary intake can vary according to both race and ethnicity; collapsing racial/ethnic groups can alter means and distributions, generating faulty conclusions. Further research is warranted to explore relationships between dietary self-care and marital status, race, ethnicity, and physiological variables. ^
Resumo:
Purpose. To determine if self-efficacy (SE) changes predicted total fat (TF) and total fiber (TFB) intake and the relationship between SE changes and the two dietary outcomes. ^ Design. This is a secondary analysis, utilizing baseline and first follow up (FFU) data from the NULIFE, a randomized trial. ^ Setting. Nutrition classes were taught in the Texas Medical Center in Houston, Texas. ^ Participants. 79 pre-menopausal, 25--45 year old African American women with an 85% response rate at FFU. ^ Method. Dietary intake was assessed with the Arizona Food Frequency Questionnaire and SE with the Self Efficacy for Dietary Change Questionnaire. Analysis was done using Stata version 9. Linear and logistic regression was used with adjustment for confounders. ^ Results. Linear regression analyses showed that SE changes for eating fruits and vegetables predicted total fiber intake in the control group for both the univariate (P = 0.001) and multivariate (P = 0.01) models while SE for eating fruits and vegetables at first follow-up predicted total fiber intake in the intervention for both models (P = 0.000). Logistic regression analyses of low fat SE changes and 30% or less for total fat intake, showed an adjusted OR of 0.22 (95% CI = 0.03, 1.48; P = 0.12) in the intervention group. The logistic regression analyses of SE changes in fruits and vegetables and 10g or more for total fiber intake, showed an adjusted OR of 6.25 (95% CI = 0.53, 72.78; P = 0.14) in the control group. ^ Conclusion. SE for eating fruits and vegetables at first follow-up predicted intervention groups' TFB intake and intervention women that increased their SE for eating a low fat diet were more likely to achieve the study goal of 30% or less calories from TF. SE changes for eating fruits and vegetables predicted the control's TFB intake and control women that increased their SE for eating fruits and vegetables were more likely to achieve the study goal of 10 g or more from TFB. Limitations are use of self-report measures, small sample size, and possible control group contamination.^
Resumo:
Supermarket nutrient movement, a community food consumption measure, aggregated 1,023 high-fat foods, representing 100% of visible fats and approximately 44% of hidden fats in the food supply (FAO, 1980). Fatty acid and cholesterol content of foods shipped from the warehouse to 47 supermarkets located in the Houston area were calculated over a 6 month period. These stores were located in census tracts with over 50% of a given ethnicity: Hispanic, black non-Hispanic, or white non-Hispanic. Categorizing the supermarket census tracts by predominant ethnicity, significant differences were found by ANOVA in the proportion of specific fatty acids and cholesterol content of the foods examined. Using ecological regression, ethnicity, income, and median age predicted supermarket lipid movements while residential stability did not. No associations were found between lipid movements and cardiovascular disease mortality, making further validation necessary for epidemiological application of this method. However, it has been shown to be a non-reactive and cost-effective method appropriate for tracking target foods in populations of groups, and for assessing the impact of mass media nutrition education, legislation, and fortification on community food and nutrient purchase patterns. ^
Resumo:
Body fat distribution is a cardiovascular health risk factor in adults. Body fat distribution can be measured through various methods including anthropometry. It is not clear which anthropometric index is suitable for epidemiologic studies of fat distribution and cardiovascular disease. The purpose of the present study was to select a measure of body fat distribution from among a series of indices (those traditionally used in the literature and others constructed from the analysis) that is most highly correlated with lipid-related variables and is independent of overall fatness. Subjects were Mexican-American men and women (N = 1004) from a study of gallbladder disease in Starr County, Texas. Multivariate associations were sought between lipid profile measures (lipids, lipoproteins, and apolipoproteins) and two sets of anthropometric variables (4 circumferences and 6 skinfolds). This was done to assess the association between lipid-related measures and the two sets of anthropometric variables and guide the construction of indices.^ Two indices emerged from the analysis that seemed to be highly correlated with lipid profile measures independent of obesity. These indices are: 2*arm circumference-thigh skinfold in pre- and post-menopausal women and arm/thigh circumference ratio in men. Next, using the sum of all skinfolds to represent obesity and the selected body fat distribution indices, the following hypotheses were tested: (1) state of obesity and centrally/upper distributed body fat are equally predictive of lipids, lipoproteins and apolipoproteins, and (2) the correlation among the lipid-related measures is not altered by obesity and body fat distribution.^ With respect to the first hypothesis, the present study found that most lipids, lipoproteins and apolipoproteins were significantly associated with both overall fatness and anatomical location of body fat in both sex and menopausal groups. However, within men and post-menopausal women, certain lipid profile measures (triglyceride and HDLT among post-menopausal women and apos C-II, CIII, and E among men) had substantially higher correlation with body fat distribution as compared with overall fatness.^ With respect to the second hypothesis, both obesity and body fat distribution were found to alter the association among plasma lipid variables in men and women. There was a suggestion from the data that the pattern of correlations among men and post-menopausal women are more comparable. Among men correlations involving apo A-I, HDLT, and HDL$\sb2$ seemed greatly influenced by obesity, and A-II by fat distribution; among post-menopausal women correlations involving apos A-I and A-II were highly affected by the location of body fat.^ Thus, these data point out that not only can obesity and fat distribution affect levels of single measures, they also can markedly influence the pattern of relationship among measures. The fact that such changes are seen for both obesity and fat distribution is significant, since the indices employed were chosen because they were independent of one another. ^
Resumo:
Longitudinal principal components analyses on a combination of four subcutaneous skinfolds (biceps, triceps, subscapular and suprailiac) were performed using data from the London Longitudinal Growth Study. The main objectives were to discover at what age during growth sex differences in body fat distribution occur and to see if there is continuity in body fatness and body fat distribution from childhood into the adult status (18 years). The analyses were done for four age sectors (3mon-3yrs, 3yrs-8yrs, 8yrs-18yrs and 3yrs-18yrs). Longitudinal principal component one (LPC1) for each age interval in both sexes represents the population mean fat curve. Component two (LPC2) is a velocity of fatness component. Component three (LPC3) in the 3mon-3yrs age sector represents infant fat wave in both sexes. In the next two age sectors component three in males represents peaks and shifts in fat growth (change in velocity), while in females it represents body fat distribution. Component four (LPC4) in the same two age sectors is a reversal in the sexes of the patterns seen for component three, i.e., in males it is body fat distribution and in females velocity shifts. Components five and above represent more complicated patterns of change (multiple increases and decreases across the age interval). In both sexes there is strong tracking in fatness from middle childhood to adolescence. In males only there is also a low to moderate tracking of infant fat with middle to late childhood fat. These data are strongly supported in the literature. Several factors are known to predict adult fatness among the most important being previous levels of fatness (at earlier ages) and the age at rebound. In addition we found that the velocity of fat change in middle childhood was highly predictive of later fatness (r $\approx -$0.7), even more so than age at rebound (r $\approx -$0.5). In contrast to fatness (LPC1), body fat distribution (LPC3-LPC4) did not track well even though significant components of body fat distribution occur at each age. Tracking of body fat distribution was higher in females than males. Sex differences in body fat distribution are non existent. Some sex differences are evident with the peripheral-to-central ratios after age 14 years. ^
Resumo:
The pattern of body fat distribution known as "centralized", and characterized by a predominance of subcutaneous fat on the trunk and a "pot belly", has been associated with an increased risk of chronic disease. These patterns of fat distribution, as well as the lifestyle habit variables associated with adult fatness and chronic morbidity clearly begin to develop during childhood, indicating the need for intervention and primary prevention of obesity, particularly the centralized form, during childhood or adolescence. The purpose of this study was to determine whether regular aerobic exercise could beneficially alter the distribution of body fat in 8 and 9 year old children. One hundred and eighty-eight participants were randomized into either a regular aerobic exercise treatment group or a standard physical education program control group. A variety of aerobic activities was used for intervention 5 days per week during physical education class for a period of 12 weeks. Fat distribution was measured by a number of the most commonly used indices, including ratios of body circumferences and skinfolds and indices derived from a principal components analysis. Change over time in average pulse rate was used to determine if intervention actually occurred. Approximately 10% of the students were remeasured, allowing the calculation of intra- and interexaminer measurement reliability estimates for all indices.^ This study group was comparable to the U.S. population, though the study children were slightly larger for certain measures. No effect of the exercise intervention was found. The most likely explanation for this was inadequacy of the intervention, as indicated by the lack of any change in average pulse rate with treatment. The results of the measurement reliability analysis are reported and indicate that body circumference ratios are more precise than skinfold ratios, particularly when multiple observers are used. Reliability estimates for the principal component indices were also high.^ It remains unclear whether the distribution of body fat can be altered with exercise. It is likely that this issue will remain undecided until one highly reliable, valid, and sensitive measure of fat distribution can be found. ^