5 resultados para Information organization

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A management information system (MIS) provides a means for collecting, reporting, and analyzing data from all segments of an organization. Such systems are common in business but rare in libraries. The Houston Academy of Medicine-Texas Medical Center Library developed an MIS that operates on a system of networked IBM PCs and Paradox, a commercial database software package. The data collected in the system include monthly reports, client profile information, and data collected at the time of service requests. The MIS assists with enforcement of library policies, ensures that correct information is recorded, and provides reports for library managers. It also can be used to help answer a variety of ad hoc questions. Future plans call for the development of an MIS that could be adapted to other libraries' needs, and a decision-support interface that would facilitate access to the data contained in the MIS databases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

According to the 2000 United States Census, the Asian population in Houston, Texas, has increased more than 67% in the last ten years. To supplement an already active consumer health information program, the staff of the Houston Academy of Medicine-Texas Medical Center Library worked with community partners to bring health information to predominantly Asian neighborhoods. Brochures on health topics of concern to the Asian community were translated and placed in eight informational kiosks in Asian centers such as temples and an Asian grocery store. A press conference and a ribbon cutting ceremony were held to debut the kiosks and to introduce the Consumer Health Information for Asians (CHIA) program. Project goals for the future include digitizing the translated brochures, mounting them on the Houston HealthWays Website, and developing touch-screen kiosks. The CHIA group is investigating adding health resources in other Asian languages, as well as Spanish. Funding for this project has come from outside sources rather than from the regular library budget.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have shown that short-term sensitization of the Aplysia siphon-withdrawal reflex circuit results in multiple sites of change in synaptic efficacy. In this dissertation I have used a realistic modeling approach (using an integrate-and-fire scheme), in conjunction with electrophysiological experiments, to evaluate the contribution of each site of plasticity to the sensitized response.^ This dissertation contains a detailed description of methodology for the construction of the model circuit, consisting of the LFS motor neurons and ten interneurons known to convey excitatory input to them. The model replicates closely the natural motor neuron firing response to a brief tactile stimulus.^ The various circuit elements have different roles for producing circuit output. For example, the sensory connections onto the motor neuron are important for the production of the phasic response, while the polysynaptic interneuronal connections are important for producing the tonic response.^ The multiple sites of plasticity that produce changes in circuit output also have specialized roles. Presynaptic facilitation of the sensory neuron to LFS connection enhances only the phasic component of the motor neuron firing response. The sensory neuron to interneuron connections primarily enhance the tonic component of the motor neuron firing response. Also, the L29 posttetanic potentiation and the L30 presynaptic inhibition primarily enhance the tonic component of the motor neuron firing response. Finally, the information content at the various sites of plasticity can shift with changes in stimulus intensity. This suggests that while the sites of plasticity encoding memory are fixed, the information content at these sites can be dynamic, shifting in anatomical location with changes in the intensity of the test stimulus.^ These sites of plasticity also produce specific changes in the behavioral response. Sensory-LFS plasticity selectively increases the amplitude of the behavioral response, and has no effect on the duration of the behavioral response. Interneuronal plasticity (L29 and L30) affects both the amplitude and duration of the behavioral response. Other sensory plasticity also affect both the amplitude and duration of the behavioral response, presumably by increasing the recruitment of the interneurons, which provide all of the effect on duration of the behavioral response. ^

Relevância:

30.00% 30.00%

Publicador: