4 resultados para Information dispersal algorithm
em DigitalCommons@The Texas Medical Center
Resumo:
A nonlinear viscoelastic image registration algorithm based on the demons paradigm and incorporating inverse consistent constraint (ICC) is implemented. An inverse consistent and symmetric cost function using mutual information (MI) as a similarity measure is employed. The cost function also includes regularization of transformation and inverse consistent error (ICE). The uncertainties in balancing various terms in the cost function are avoided by alternatively minimizing the similarity measure, the regularization of the transformation, and the ICE terms. The diffeomorphism of registration for preventing folding and/or tearing in the deformation is achieved by the composition scheme. The quality of image registration is first demonstrated by constructing brain atlas from 20 adult brains (age range 30-60). It is shown that with this registration technique: (1) the Jacobian determinant is positive for all voxels and (2) the average ICE is around 0.004 voxels with a maximum value below 0.1 voxels. Further, the deformation-based segmentation on Internet Brain Segmentation Repository, a publicly available dataset, has yielded high Dice similarity index (DSI) of 94.7% for the cerebellum and 74.7% for the hippocampus, attesting to the quality of our registration method.
Resumo:
Purpose. To examine the association between living in proximity to Toxics Release Inventory (TRI) facilities and the incidence of childhood cancer in the State of Texas. ^ Design. This is a secondary data analysis utilizing the publicly available Toxics release inventory (TRI), maintained by the U.S. Environmental protection agency that lists the facilities that release any of the 650 TRI chemicals. Total childhood cancer cases and childhood cancer rate (age 0-14 years) by county, for the years 1995-2003 were used from the Texas cancer registry, available at the Texas department of State Health Services website. Setting: This study was limited to the children population of the State of Texas. ^ Method. Analysis was done using Stata version 9 and SPSS version 15.0. Satscan was used for geographical spatial clustering of childhood cancer cases based on county centroids using the Poisson clustering algorithm which adjusts for population density. Pictorial maps were created using MapInfo professional version 8.0. ^ Results. One hundred and twenty five counties had no TRI facilities in their region, while 129 facilities had at least one TRI facility. An increasing trend for number of facilities and total disposal was observed except for the highest category based on cancer rate quartiles. Linear regression analysis using log transformation for number of facilities and total disposal in predicting cancer rates was computed, however both these variables were not found to be significant predictors. Seven significant geographical spatial clusters of counties for high childhood cancer rates (p<0.05) were indicated. Binomial logistic regression by categorizing the cancer rate in to two groups (<=150 and >150) indicated an odds ratio of 1.58 (CI 1.127, 2.222) for the natural log of number of facilities. ^ Conclusion. We have used a unique methodology by combining GIS and spatial clustering techniques with existing statistical approaches in examining the association between living in proximity to TRI facilities and the incidence of childhood cancer in the State of Texas. Although a concrete association was not indicated, further studies are required examining specific TRI chemicals. Use of this information can enable the researchers and public to identify potential concerns, gain a better understanding of potential risks, and work with industry and government to reduce toxic chemical use, disposal or other releases and the risks associated with them. TRI data, in conjunction with other information, can be used as a starting point in evaluating exposures and risks. ^
Resumo:
In population studies, most current methods focus on identifying one outcome-related SNP at a time by testing for differences of genotype frequencies between disease and healthy groups or among different population groups. However, testing a great number of SNPs simultaneously has a problem of multiple testing and will give false-positive results. Although, this problem can be effectively dealt with through several approaches such as Bonferroni correction, permutation testing and false discovery rates, patterns of the joint effects by several genes, each with weak effect, might not be able to be determined. With the availability of high-throughput genotyping technology, searching for multiple scattered SNPs over the whole genome and modeling their joint effect on the target variable has become possible. Exhaustive search of all SNP subsets is computationally infeasible for millions of SNPs in a genome-wide study. Several effective feature selection methods combined with classification functions have been proposed to search for an optimal SNP subset among big data sets where the number of feature SNPs far exceeds the number of observations. ^ In this study, we take two steps to achieve the goal. First we selected 1000 SNPs through an effective filter method and then we performed a feature selection wrapped around a classifier to identify an optimal SNP subset for predicting disease. And also we developed a novel classification method-sequential information bottleneck method wrapped inside different search algorithms to identify an optimal subset of SNPs for classifying the outcome variable. This new method was compared with the classical linear discriminant analysis in terms of classification performance. Finally, we performed chi-square test to look at the relationship between each SNP and disease from another point of view. ^ In general, our results show that filtering features using harmononic mean of sensitivity and specificity(HMSS) through linear discriminant analysis (LDA) is better than using LDA training accuracy or mutual information in our study. Our results also demonstrate that exhaustive search of a small subset with one SNP, two SNPs or 3 SNP subset based on best 100 composite 2-SNPs can find an optimal subset and further inclusion of more SNPs through heuristic algorithm doesn't always increase the performance of SNP subsets. Although sequential forward floating selection can be applied to prevent from the nesting effect of forward selection, it does not always out-perform the latter due to overfitting from observing more complex subset states. ^ Our results also indicate that HMSS as a criterion to evaluate the classification ability of a function can be used in imbalanced data without modifying the original dataset as against classification accuracy. Our four studies suggest that Sequential Information Bottleneck(sIB), a new unsupervised technique, can be adopted to predict the outcome and its ability to detect the target status is superior to the traditional LDA in the study. ^ From our results we can see that the best test probability-HMSS for predicting CVD, stroke,CAD and psoriasis through sIB is 0.59406, 0.641815, 0.645315 and 0.678658, respectively. In terms of group prediction accuracy, the highest test accuracy of sIB for diagnosing a normal status among controls can reach 0.708999, 0.863216, 0.639918 and 0.850275 respectively in the four studies if the test accuracy among cases is required to be not less than 0.4. On the other hand, the highest test accuracy of sIB for diagnosing a disease among cases can reach 0.748644, 0.789916, 0.705701 and 0.749436 respectively in the four studies if the test accuracy among controls is required to be at least 0.4. ^ A further genome-wide association study through Chi square test shows that there are no significant SNPs detected at the cut-off level 9.09451E-08 in the Framingham heart study of CVD. Study results in WTCCC can only detect two significant SNPs that are associated with CAD. In the genome-wide study of psoriasis most of top 20 SNP markers with impressive classification accuracy are also significantly associated with the disease through chi-square test at the cut-off value 1.11E-07. ^ Although our classification methods can achieve high accuracy in the study, complete descriptions of those classification results(95% confidence interval or statistical test of differences) require more cost-effective methods or efficient computing system, both of which can't be accomplished currently in our genome-wide study. We should also note that the purpose of this study is to identify subsets of SNPs with high prediction ability and those SNPs with good discriminant power are not necessary to be causal markers for the disease.^
Resumo:
Additive and multiplicative models of relative risk were used to measure the effect of cancer misclassification and DS86 random errors on lifetime risk projections in the Life Span Study (LSS) of Hiroshima and Nagasaki atomic bomb survivors. The true number of cancer deaths in each stratum of the cancer mortality cross-classification was estimated using sufficient statistics from the EM algorithm. Average survivor doses in the strata were corrected for DS86 random error ($\sigma$ = 0.45) by use of reduction factors. Poisson regression was used to model the corrected and uncorrected mortality rates with covariates for age at-time-of-bombing, age at-time-of-death and gender. Excess risks were in good agreement with risks in RERF Report 11 (Part 2) and the BEIR-V report. Bias due to DS86 random error typically ranged from $-$15% to $-$30% for both sexes, and all sites and models. The total bias, including diagnostic misclassification, of excess risk of nonleukemia for exposure to 1 Sv from age 18 to 65 under the non-constant relative projection model was $-$37.1% for males and $-$23.3% for females. Total excess risks of leukemia under the relative projection model were biased $-$27.1% for males and $-$43.4% for females. Thus, nonleukemia risks for 1 Sv from ages 18 to 85 (DRREF = 2) increased from 1.91%/Sv to 2.68%/Sv among males and from 3.23%/Sv to 4.02%/Sv among females. Leukemia excess risks increased from 0.87%/Sv to 1.10%/Sv among males and from 0.73%/Sv to 1.04%/Sv among females. Bias was dependent on the gender, site, correction method, exposure profile and projection model considered. Future studies that use LSS data for U.S. nuclear workers may be downwardly biased if lifetime risk projections are not adjusted for random and systematic errors. (Supported by U.S. NRC Grant NRC-04-091-02.) ^