7 resultados para Immunologic Tests -- methods

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Congestive heart failure has long been one of the most serious medical conditions in the United States; in fact, in the United States alone, heart failure accounts for 6.5 million days of hospitalization each year. One important goal of heart-failure therapy is to inhibit the progression of congestive heart failure through pharmacologic and device-based therapies. Therefore, there have been efforts to develop device-based therapies aimed at improving cardiac reserve and optimizing pump function to meet metabolic requirements. The course of congestive heart failure is often worsened by other conditions, including new-onset arrhythmias, ischemia and infarction, valvulopathy, decompensation, end-organ damage, and therapeutic refractoriness, that have an impact on outcomes. The onset of such conditions is sometimes heralded by subtle pathophysiologic changes, and the timely identification of these changes may promote the use of preventive measures. Consequently, device-based methods could in the future have an important role in the timely identification of the subtle pathophysiologic changes associated with congestive heart failure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Linkage disequilibrium methods can be used to find genes influencing quantitative trait variation in humans. Linkage disequilibrium methods can require smaller sample sizes than linkage equilibrium methods, such as the variance component approach to find loci with a specific effect size. The increase in power is at the expense of requiring more markers to be typed to scan the entire genome. This thesis compares different linkage disequilibrium methods to determine which factors influence the power to detect disequilibrium. The costs of disequilibrium and equilibrium tests were compared to determine whether the savings in phenotyping costs when using disequilibrium methods outweigh the additional genotyping costs.^ Nine linkage disequilibrium tests were examined by simulation. Five tests involve selecting isolated unrelated individuals while four involved the selection of parent child trios (TDT). All nine tests were found to be able to identify disequilibrium with the correct significance level in Hardy-Weinberg populations. Increasing linked genetic variance and trait allele frequency were found to increase the power to detect disequilibrium, while increasing the number of generations and distance between marker and trait loci decreased the power to detect disequilibrium. Discordant sampling was used for several of the tests. It was found that the more stringent the sampling, the greater the power to detect disequilibrium in a sample of given size. The power to detect disequilibrium was not affected by the presence of polygenic effects.^ When the trait locus had more than two trait alleles, the power of the tests maximized to less than one. For the simulation methods used here, when there were more than two-trait alleles there was a probability equal to 1-heterozygosity of the marker locus that both trait alleles were in disequilibrium with the same marker allele, resulting in the marker being uninformative for disequilibrium.^ The five tests using isolated unrelated individuals were found to have excess error rates when there was disequilibrium due to population admixture. Increased error rates also resulted from increased unlinked major gene effects, discordant trait allele frequency, and increased disequilibrium. Polygenic effects did not affect the error rates. The TDT, Transmission Disequilibrium Test, based tests were not liable to any increase in error rates.^ For all sample ascertainment costs, for recent mutations ($<$100 generations) linkage disequilibrium tests were less expensive than the variance component test to carry out. Candidate gene scans saved even more money. The use of recently admixed populations also decreased the cost of performing a linkage disequilibrium test. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Linkage and association studies are major analytical tools to search for susceptibility genes for complex diseases. With the availability of large collection of single nucleotide polymorphisms (SNPs) and the rapid progresses for high throughput genotyping technologies, together with the ambitious goals of the International HapMap Project, genetic markers covering the whole genome will be available for genome-wide linkage and association studies. In order not to inflate the type I error rate in performing genome-wide linkage and association studies, multiple adjustment for the significant level for each independent linkage and/or association test is required, and this has led to the suggestion of genome-wide significant cut-off as low as 5 × 10 −7. Almost no linkage and/or association study can meet such a stringent threshold by the standard statistical methods. Developing new statistics with high power is urgently needed to tackle this problem. This dissertation proposes and explores a class of novel test statistics that can be used in both population-based and family-based genetic data by employing a completely new strategy, which uses nonlinear transformation of the sample means to construct test statistics for linkage and association studies. Extensive simulation studies are used to illustrate the properties of the nonlinear test statistics. Power calculations are performed using both analytical and empirical methods. Finally, real data sets are analyzed with the nonlinear test statistics. Results show that the nonlinear test statistics have correct type I error rates, and most of the studied nonlinear test statistics have higher power than the standard chi-square test. This dissertation introduces a new idea to design novel test statistics with high power and might open new ways to mapping susceptibility genes for complex diseases. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the recognition of the importance of evidence-based medicine, there is an emerging need for methods to systematically synthesize available data. Specifically, methods to provide accurate estimates of test characteristics for diagnostic tests are needed to help physicians make better clinical decisions. To provide more flexible approaches for meta-analysis of diagnostic tests, we developed three Bayesian generalized linear models. Two of these models, a bivariate normal and a binomial model, analyzed pairs of sensitivity and specificity values while incorporating the correlation between these two outcome variables. Noninformative independent uniform priors were used for the variance of sensitivity, specificity and correlation. We also applied an inverse Wishart prior to check the sensitivity of the results. The third model was a multinomial model where the test results were modeled as multinomial random variables. All three models can include specific imaging techniques as covariates in order to compare performance. Vague normal priors were assigned to the coefficients of the covariates. The computations were carried out using the 'Bayesian inference using Gibbs sampling' implementation of Markov chain Monte Carlo techniques. We investigated the properties of the three proposed models through extensive simulation studies. We also applied these models to a previously published meta-analysis dataset on cervical cancer as well as to an unpublished melanoma dataset. In general, our findings show that the point estimates of sensitivity and specificity were consistent among Bayesian and frequentist bivariate normal and binomial models. However, in the simulation studies, the estimates of the correlation coefficient from Bayesian bivariate models are not as good as those obtained from frequentist estimation regardless of which prior distribution was used for the covariance matrix. The Bayesian multinomial model consistently underestimated the sensitivity and specificity regardless of the sample size and correlation coefficient. In conclusion, the Bayesian bivariate binomial model provides the most flexible framework for future applications because of its following strengths: (1) it facilitates direct comparison between different tests; (2) it captures the variability in both sensitivity and specificity simultaneously as well as the intercorrelation between the two; and (3) it can be directly applied to sparse data without ad hoc correction. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patients who had started HAART (Highly Active Anti-Retroviral Treatment) under previous aggressive DHHS guidelines (1997) underwent a life-long continuous HAART that was associated with many short term as well as long term complications. Many interventions attempted to reduce those complications including intermittent treatment also called pulse therapy. Many studies were done to study the determinants of rate of fall in CD4 count after interruption as this data would help guide treatment interruptions. The data set used here was a part of a cohort study taking place at the Johns Hopkins AIDS service since January 1984, in which the data were collected both prospectively and retrospectively. The patients in this data set consisted of 47 patients receiving via pulse therapy with the aim of reducing the long-term complications. ^ The aim of this project was to study the impact of virologic and immunologic factors on the rate of CD4 loss after treatment interruption. The exposure variables under investigation included CD4 cell count and viral load at treatment initiation. The rates of change of CD4 cell count after treatment interruption was estimated from observed data using advanced longitudinal data analysis methods (i.e., linear mixed model). Using random effects accounted for repeated measures of CD4 per person after treatment interruption. The regression coefficient estimates from the model was then used to produce subject specific rates of CD4 change accounting for group trends in change. The exposure variables of interest were age, race, and gender, CD4 cell counts and HIV RNA levels at HAART initiation. ^ The rate of fall of CD4 count did not depend on CD4 cell count or viral load at initiation of treatment. Thus these factors may not be used to determine who can have a chance of successful treatment interruption. CD4 and viral load were again studied by t-tests and ANOVA test after grouping based on medians and quartiles to see any difference in means of rate of CD4 fall after interruption. There was no significant difference between the groups suggesting that there was no association between rate of fall of CD4 after treatment interruption and above mentioned exposure variables. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation develops and tests a comparative effectiveness methodology utilizing a novel approach to the application of Data Envelopment Analysis (DEA) in health studies. The concept of performance tiers (PerT) is introduced as terminology to express a relative risk class for individuals within a peer group and the PerT calculation is implemented with operations research (DEA) and spatial algorithms. The analysis results in the discrimination of the individual data observations into a relative risk classification by the DEA-PerT methodology. The performance of two distance measures, kNN (k-nearest neighbor) and Mahalanobis, was subsequently tested to classify new entrants into the appropriate tier. The methods were applied to subject data for the 14 year old cohort in the Project HeartBeat! study.^ The concepts presented herein represent a paradigm shift in the potential for public health applications to identify and respond to individual health status. The resultant classification scheme provides descriptive, and potentially prescriptive, guidance to assess and implement treatments and strategies to improve the delivery and performance of health systems. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pattern of the births during the week has been reported by many studies. The births occurred in weekends are found consistently less then births occurred in weekdays. This study employed two statistical methods, two-way ANOVA and two-way Friedman's test to analyse the daily variations in amount of births of 222,735 births from 2005-2007 in Harris County, Texas. The two methods were compared on their assumptions, procedures and results. Both of the tests showed a significant result which indicated that the births through the week are not uniformly distributed. The result of multiple comparison demonstrated the births occurring on weekends were significantly different than the births occurring on weekdays with least amount on Sundays.^