23 resultados para Immunoglobulin A antibody

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this project was to determine if stability of specific antibody secretion improved after fusion of Epstein-Barr virus (EBV)-transformed lymphoblastoid cells with P3X63Ag8.653 murine myeloma cells. Production of human monoclonal antibodies by Epstein-Barr virus transformation and somatic cell fusion has been used by many laboratories, however the steps involved have not been fully optimized. B lymphocytes isolated from the peripheral blood of normal donors were enriched for Thomsen-Friedenreich (T) antigen-reactive cells by panning on asialoglycophorin. The EBV-transformed lymphoblastoid cell lines generated from asialoglycophorin-adherent B lymphocytes were treated in three different manners: (1) cloned and maintained in culture as monoclonal lymphoblastoid cell lines, (2) cloned and fused with murine myeloma cells or (3) fused shortly after transfomation without prior cloning. Cloned lymphoblastoid cell lines maintained in culture without fusion either died or lost specific antibody secretion within five months. Uncloned lymphoblastoid cells remained viable for up to three months but lost specific antibody secretion within two months probably due to overgrowth by nonspecific clones. In an attempt to increase longevity and to stabilize specific antibody secretion by these cells, the cloned lymphoblastoid cells were fused with murine myeloma cells. In nine of ten fusions no hybrids were recovered. As an alternate approach, uncloned lymphoblastoid cells secreting T antigen-specific antibody were hybridized with murine myeloma cells, hybrids secreting T antigen-specific antibody were recovered in six of seven fusions. Furthermore, T antigen-specific antibodies of high titer were secreted by the heterohybridoma clones for more than five months of continuous culture. These heterohybridoma cells secreted more immunoglobulin, produced greater titers of antibody and maintained specific antibody secretion longer than either monoclonal or polyclonal EBV-transformed lymphoblastoid cells. These studies have conclusively demonstrated that fusion of polyclonal lymphoblastoid cells secreting T antigen-specific antibody with murine myeloma cells results in prolongation of human monoclonal antibody production compared with unfused monoclonal or polyclonal lymphoblastoid cell lines. This procedure should be generally applicable for the production of stable human monoclonal antibody-secreting cells lines from peripheral blood lymphocytes. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to investigate the immunochemical nature of the polyclonal immune response to the 14mer peptide TINKEDDESPGLYG and to identify interactions among antibodies to more than one epitope. Two groups of rabbits were immunized with the 14mer peptide and a Keyhole Limpet hemocyanin (KLH) carrier, but with KLH attached either to the 14mer's N- or C-terminus. Two approximate epitopes were mapped by an antibody-capture enzyme-linked immunosorbent assay method using antiserum obtained when KLH was oriented on the C-terminus of the 14mer. A precise mapping of the epitopes performed with inhibition enzyme immunoassays (iEIAs) resulted in an N-terminal 6mer epitope TINKED and a C-terminal 10mer epitope EDDESPGLYG. The epitopes overlapped by two amino acids. IEIAs and iEIAs incorporating antibody-blocking peptides indicated that the two anti-epitope antibody fractions did not interfere with one anothers' epitope binding. It was postulated that the anti-TINKED and anti-EDDESPGLYG antibody fractions individually bind their respective hydrophobic epitope "core" region at the N- or C-terminal of peptide TINKEDDESPGLYG, while sharing the two hydrophilic overlap amino acids. This antibody "lap joint" binding interaction can be accomplished by each of the anti-epitope antibodies binding an opposite side of the epitope overlap region in the shallow periphery of its binding site. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Staphylococcus aureus is a globally prevalent pathogen that can cause a wide variety of acute and chronic diseases in both adults and children, in both immune susceptible populations and healthy individuals. Its ability to cause persistent infections has been linked to multiple immune evasion strategies, including Efb-mediated complement inhibition. As new multi-drug-resistant strains emerge, therapeutic alternatives to traditional antibiotics must be developed. These experiments assessed the ability of healthy patient immunoglobulin to cleave Efb and disable the complement-inhibitory properties of Efb in vitro. Levels of immunoglobulin-mediated Efb catalysis varied both between immunoglobulin isoform/isotype and between individuals. Serum IgG showed the strongest catalytic activity of the immunoglobulin isotypes tested. Additionally, IgG hydrolyzed the virulence factor in a way that enabled only minimal binding to the complement component C3b, effectively blocking Efb-mediated inhibition of complement lysis. Salivary IgA and serum IgM did not block Efb-mediated inhibition of complement. Catalytic IgG selectively cleaved Efb and showed no cleavage of a variety of other proteins tested. Catalytic activity of IgG was inhibited by serine protease inhibitors, but not by other protease inhibitors, suggesting a serine-protease mechanism of catalysis. It is proposed that varying concentrations and activity levels of catalytic IgG between healthy individuals and those with current or recurrent S. aureus infections in both adult and pediatric populations be studied in order to assess the potential effectiveness of passive immunization therapy with catalytic monoclonal IgG. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Staphylococcus aureus is an important human pathogen of global health significance, whose frequency is increasing and whose persistence and versatility allow it to remain established in communities worldwide. An observed significant increase in infections, particularly in children with no predisposing risk factors or medical conditions, led to an investigation into pediatric humoral immune response to Panton-Valentine Leukocidin (PVL) and to other antigens expressed by S. aureus that represent the important classes of virulence activities. Patients who were diagnosed with staphylococcal infections were enrolled (n=60), and serum samples collected at the time of admission were analyzed using ELISA and Western blot to screen for immune response to the panel of recombinant proteins. The dominant circulating immunoglobulin titers in this pediatric population were primarily IgG, were specific, and were directed against LukF and LukS, while suppression of other important virulence factors in the presence of PVL was suggested. Patients with invasive infections (osteomyelitis, pneumonia or myositis) had higher titers against LukF and LukS compared to patients with non-invasive infections (abscesses, cellulitis or lymphadenitis). In patients with osteomyelitis, antibody responses to LukF and LukS were higher than antibody responses to any other virulence factor examined. This description of immune response to selected virulence factors of S. aureus caused by isolates of the USA300 lineage in children is novel. Antibody titers also correlated with markers of inflammation. The significance of these correlations remains to be understood.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Periodontal diseases (PD) are infectious, inflammatory, and tissue destructive events which affect the periodontal ligament that surround and support the teeth. Periodontal diseases are the major cause of tooth loss after age 35, with gingivitis and periodontitis affecting 75% of the adult population. A select group of bacterial organisms are associated with periodontal pathogenesis. There is a direct association between oral hygiene and prevention of PD. The importance of genetic differences and host immune response capabilities in determining host, susceptibility or resistance to PD has not been established. This study examined the risk factors and serum (humoral) immune response to periodontal diseased-associated pathogens in a 55 to 80+ year old South Texas study sample with PD. This study sample was described by: age, sex, ethnicity, the socioeconomic factors marital status, income and occupation, IgG, IgA, IgM immunoglobulin status, and the autoimmune response markers rheumatoid factor (RF) and antinuclear antibody (ANA). These variables were used to determine the risk factors associated with development of PD. Serum IgG, IgA, IgM antibodies to bacterial antigens provided evidence for disease exposure.^ A causal model for PD was constructed from associations for risk factors (ethnicity, marital status, income, and occupation) with dental exam and periodontitis. The multiple correlation between PD and ethnicity, income and dental exam was significant. Hispanics of low income were least likely to have had a dental exam in the last year and most likely to have PD. The etiologic agents for PD, as evidenced by elevated humoral antibody responses, were the Gram negative microorganisms Bacteroides gingivalis, serotypes FDC381 and SUNYaBA7A1-28, and Wolinella recta. Recommendation for a PD prevention and control program are provided. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human colon cancer cells, LS180 and 174T, exhibit monoclonal antibody (mAb) 1083-17-1A and 5E113 defined tumor associated antigens. By radioimmunoassay, LS180 cells expressed the highest amount of mAb1083 defined antigens among the cell lines tested. Another mAb, 5E113, competed with mAb1083 for binding to LS180 cells, suggesting that both mAbs might bind onto identical (or adjacent) epitopes. By Scatchard analysis, about one million copies of the epitopes were present on LS180 colon cancer cells. The affinity of mAb1083 binding to the cells was 2.97 x 10('10) M('-1); the Sipsian heteroclonality value of mAb1083 was 0.9, thus approximating a single clone of reactive antibody. The qualitative studies showed that the epitopes were probably not carbohydrate because of their sensitivity to proteinases and not to mixed glucosidases and neuraminidase. The tunicamycin homologue B(,2) inhibited the incoporation of ('3)H-labeled galactose but not uptake of ('35)S-labeled methionine, nor expression of monoclonal antibody defined antigens providing further evidence to exclude the possibility of carbohydrate epitopes. There was evidence that the epitope might be partially masked in its "native" conformation, since short exposure or low dose treatment with proteases increased mAbs binding. The best detergent for antigen extraction, as detected by dot blotting and competitive inhibition assays, was octylglucoside at 30 mM concentration. Three methods, immunoprecipitation, Western blotting and photoaffinity labeling, were used to determine the molecular nature of the antigens. These results demonstrated that the antibody bound both 43 K daltons (KD) and 22 KD proteins.^ An in vitro cell-mediated immune approach was also used to attempt identifying function for the antigens. The strategy was to use mAbs to block cytotoxic effector cell killing. However, instead of blocking, the mAb1083 and 5E113 showed strong antibody-dependent cell-mediated cytotoxicities (ADCCs) in the in vitro xenoimmune assay system. In addition, cytotoxic T lymphocytes (CTLs), natural killer cells, and K cell activity were found. Since even the F(ab')2 fragment of mAbs did not inhibit the cytolytic effect, the mAbs defined antigens may not be major target molecules for CTLs. In summary, two molecular species of tumor antigen(s) were identified by mAbs to be present on colon tumor cell lines, LS180 and LS174T. (Abstract shortened with permission of author.) ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By the use of Moloney murine sarcoma virus (Mo-MSV)-induced rat bone tumor (RBT) cells as immunogens, and the hybridoma technique, a mouse hybridoma clone was isolated in Dr. Chan's lab (Chan et al., 1983), which produced a monoclonal antibody, designated MC. MC detected specific antigens in three different Mo-MSV-transformed rat cell lines: 78A1 WRC, RBT and 6M2 (NRK cells infected with the ts110 mutant of Mo-MSV), but not in their untransformed counterparts. These antigens are tentatively termed transformation associated proteins (TAP). In this study, TAP were hypothesized to be the rat specific proteins which are activated by Mo-MSV and play an important role in cellular transformation, and were further investigated. Their properties are summarized as follows: (1) TAP may represent cellular products localized in the cytoplasm of 6M2 cells. (2) The expression of TAP is temperature-sensitive and related to cellular transformation, and probably activated by the v-mos gene products. The optimal temperature for the expression of both P85('gag-mos), the only known viral transforming protein in 6M2 cells, and TAP was 28(DEGREES)C. The expression of both P85('gag-mos) and TAP was proportional to the degree of transformation of 6M2 cells. (3) There were four antigenically-related forms of intracellular TAP (P66, P63, P60 and P58) in 6M2 cells. After synthesis, the 58Kd TAP was probably converted to one of the other three forms. These three polypeptides (P66, P63 and P60) were rapidly converted to two (P68 and P64) and subsequently secreted to the extracellular medium with a 50% secretion rate of 78 min. The conversion of these molecular sizes of TAP is probably related to glycosylation. Inhibition of TAP glycosylation by 0.5 ug/ml of tunicamycin could retard the secretion rate of TAP by 39%. (4) TAP are phosphoproteins, but not associated with any protein kinase activity. (5) TAP have been purified, and found to be mitogenic NRK-2 cells. TAP can bind to the receptors of NRK-2 cells with a K(,d) of 1.4 pM and with about 2 x 10('5) binding sites for TAP per NRK-2 cell. (6) Some weak proteolytic activity was found to associate with purified TAP. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to examine the relationship of immunoglobulin genes, more specifically the C regions, to the inverted repetitive sequences found in the mouse genome. Total mRNA as well as mRNA for light chain kappa was purified from mouse plasmacytoma MOPC 321 cells. Complementary DNA molecules were synthesized from the mRNA templates and hybridized to DNA fractionated on hydroxyapatite columns. This fractionation separates DNA according to the presence of inverted repetitive sequences which will be retained by hydroxyapatite while the remaining fraction will be unbound.^ The results obtained during the course of this investigation suggested the following conclusions. Firstly, it was shown that inverted sequences were not found within the transcribed DNA region. Secondly, inverted sequences are not found within the kappa gene. And finally, it was shown that the inverted sequences may not be representative of all the sequences found in MOPC 321 DNA. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Periodontal disease is the major cause of tooth loss in man. The initial histological picture of the inflamed gingiva is characteristic of local inflammatory reaction involving polymorphonuclear leukocytes, vasculitis and localized tissue loss. Subsequent clinical stages of periodontal disease (mild gingivitis) show histological evidence of the involvement of the immune response with initial accumulation of macrophages, and lymphocytes devoid of surface staining immunoglobulins (presumably T cells). As the disease progresses, a predominance of surface and cytoplasmic staining lymphocytes and plasma cells are seen (severe gingivitis and periodontitis). Whether the occurrence of the immunoglobulin positive lymphocytes and the concurrent loss of collagen and resorption of alveolar bone seen in periodontitis is indicative of a direct cause and effect relationship has been a controversy.^ The majority of investigations in the periodontal field have involved the use of peripheral blood lymphocytes or serum. Blastogenic responses of peripheral blood lymphocytes and serum antibody titers from periodontal patients to a variety of oral bacteria have not shown any correlation between response and the severity of disease. The need to study the local immune response in inflamed gingiva is apparent. Since there are no baseline studies on the functional capabilities of the lymphoid cells present in gingiva from periodontitis patients, an in depth study involving the role of the immunoglobulin positive lymphocytes was investigated.^ Inflamed gingiva from four clinically defined periodontal disease states (mild gingivitis, severe gingivitis, periodontitis and severe periodontitis) were placed in gingival organ cultures. Class specific immunoglobulins were quantitated in gingival organ culture supernatants using an indirect sandwich technique. A significant difference in mean levels of IgA and IgG was seen between mild gingivitis and periodontitis (P < .00l, P = .001), as well as in IgG levels between periodontitis and severe periodontitis (P = .001). The predominance of IgG in gingival organ culture supernatants and the statistically significant findings that the overall mean levels of IgG between mild gingivitis and periodontitis (P = .014) and between severe periodontitis and periodontitis (P = .001) suggested a possible indicator of periodontal disease. The presence of IgG in gingival organ culture supernatants was shown to be a product of actively secreting plasma cells. The incorporation of radiolabelled amino acids into IgG was noted over a seven-day period with a peak response at day 4-5. The inhibition of IgG synthesis by cyclohexamide confirmed the contention that IgG was a product of de novo synthesis and not serum derived.^ The specificity of immunoglobulins derived from gingival organ cultures were studied using a whole bacterial agglutination test. Oral bacteria frequently cultured from periodontal patients were assessed for their ability to be agglutinated by gingival organ culture supernatants. A positive correlation of antibody titer and severity of disease was seen with five strains of Actinomyces viscosus, two of Actinomyces naeslundii and one Actinomyces israelii. The agglutination of bacteria was shown to be due to the specific interaction of immunoglobulin and cell-wall antigen. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discovery and characterization of oncofetal proteins have led to significant advances in early cancer diagnosis and therapeutic monitoring of patients undergoing cancer chemotherapy. These tumor-associated antigens are presently measured by sensitive, specific immunoassay techniques based on the detection of minute amounts of labeled antigen or antibody incorporated into immune complexes, which must be isolated from free antigen and antibody.^ Since there are several disadvantages with using radioisotopes, the most common immunolabel, one major objective was to prepare covalently coupled enzyme-antibody conjugates and evaluate their use as a practical alternative to radiolabeled immune reagents. An improved technique for the production of enzyme-antibody conjugates was developed that involves oxidizing the carbohydrate moieties on a glycoprotein enzyme, then introducing antibody in the presence of polyethylene glycol (PEG). Covalent enzyme-antibody conjugates involving alkaline phosphatase and amyloglucosidase were produced and characterized.^ In order to increase the sensitivity of detecting the amyloglucosidase-antibody conjugate, an enzyme cycling assay was developed that measures glucose, the product of maltose cleavage by amyloglucosidase, in the picomole range. The increased sensitivity obtained by combined usage of the amyloglucosidase-antibody conjugate and enzyme cycling assay was then compared to that of conventional enzyme immunoassay (EIA).^ For immune complex isolation, polystyrene tubes and protein A-bearing Staphylococcus aureus were evaluated as solid phase matrices, upon which antibodies can be immobilized. A sandwich-type EIA, using antibody-coated S. aureus, was developed that measures human albumin (HSA) in the nanogram range. The assay, using an alkaline phosphatase-anti-HSA conjugate, was applied to the determination of HSA in human urine and evaluated extensively for its clinical applicability.^ Finally, in view of the clinical significance of alpha-fetoprotein (AFP) as an oncofetal antigen and the difficulty with its purification for use as an immunogen and assay standard, a chemical purification protocol was developed that resulted in a high yield of immunochemically pure AFP. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diarrhea is a major cause of morbidity and mortality worldwide. Shigella causes up to 20% of all diarrhea. Gut-level immunity and breast-feeding of infants are important factors in protection against shigellosis. The lumen of the gut is lined with lymphocytes which mediate natural killer cytotoxicity, NKC, and antibody-dependent cellular cytotoxicity, ADCC. NKC and ADCC are extracellular, nonphagocytic leukocyte killing mechanisms, which occur in the absence of complement, without prior antigen stimulation, and without regard to the major histocompatibility complex. In this study, virulent and avirulent shigellae were used as the target cells. Leukocytes from peripheral blood, breast milk, and guinea pig gut-associated tissues were used as effector cells. Adult human peripheral blood mononuclear cells and lymphocytes, but not macrophages or polymorphonuclear leukocytes, mediated NKC and ADCC at an optimal effector to target cell ratio of 100:1 in a 60 minute bactericidal assay. An antiserum dilution of 1:10 was optimal for ADCC. Whole, viable lymphocytes were necessary for cytotoxicity. Lymphocyte NKC, but not ADCC, was greatly enhanced by interferon. Lymphocyte NKC occurred against several virulent strains of S. sonnei and a virulent strain of S. flexneri. ADCC (using immune serum directed against S. sonnei) occurred against virulent S. sonnei, but not against avirulent S. sonnei or virulent S. flexneri. Lymphocyte ADCC was not inhibited by the presence of phenylbutazone or by pretreatment of lymphocytes with anti-HNK serum plus complement. Both adherent and non-adherent breast milk leukocytes mediated NKC and ADCC. Mononuclear cells from young children demonstrated normal ADCC, when compared to ADCC of adult cells. Neonatal cord blood and a CGD patient's peripheral blood mononuclear and ploymorphonuclear cells demonstrated high ADCC compared to adult cells. Intraepithelial lymphocytes, spleen cells, and peritoneal cells from normal guinea pigs demonstrated NKC and ADCC. Animals which had been starved and opiated were made susceptible to infection by Shigella. The susceptible animals demonstrated deficient NKC and ADCC with all three leukocyte populations. High NKC and ADCC activity of gut-associated leukocytes from human breast milk and guinea pig tissues may correlate with resistance to infection. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quiescent human B cells are postulated to go through activation and proliferation phases before undergoing differentiative phase for immunoglobulin secretion. The present studies address some of the aspects of activation and proliferation phase of normal human B cells. The definitions of signals responsible for B cell activation and proliferation resulted in the development of a highly specific, reproducible B cell growth factor (BCGF) assay. This BCGF bioassay utilizes activation by rabbit anti-human IgM-antibody. The functional specificity of this assay for measuring BCGF activity was demonstrated by the finding that target B cells proliferated but did not differentiate. The factor specificity was determined by specific absorption of BCGF by anti-IgM activated B cells. This assay was utilized for the studies of T-B cell collaboration and the essential function of monocytes in the production and/or release of B cell growth factor in a syngeneic in vitro system. It is apparent that highly purified T cells are poor producers of BCGF by themselves and require monocytes to secrete significant quantities of BCGF upon PHA stimulation. Macrophage soluble factor, Interleukin 1, is capable of replacing monocyte function for the release of BCGF by activated T cells. In our studies, B cells are incapable to function as accessory cells to replace monocyte function. Normal B cells are also not capable of producing BCGF under our experimental observations. However, the addition of these B cells at an optimum cell density (T:B ratio 1:1) doubles the monocyte dependent release of BCGF by syngeneic T cells. The augmentative role of B cells is expanded to understand the mechanism of BCGF release by T cells. It is observed from our studies that DR antigen of B cell surface is involved in the release of BCGF. The functional difference between DR of B cells and monocytes is observed as IL-1 could replace DR-treated monocytes whereas failed to replace DR-treated B cells for the release of BCGF by T cells. This functional difference may be attributed to the reported microheterogeneity in DR of B cells and monocytes. The addition of irradiated B cells increased the monocyte dependent T cell proliferation, suggesting the increase of T cell pool for BCGF release. In summary, the development of a biological assay specific for B cell growth factor led to the delineation of an interesting role of B cells in the release of its own growth factor by T cells. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^