3 resultados para Images Digital Processing
em DigitalCommons@The Texas Medical Center
Resumo:
Problem: Dental radiographs generally display one or more findings/diagnoses, and are linked to a unique set of patient demographics, medical history and other findings not represented by the image. However, this information is not associated with radiographs in any type of meta format, and images are not searchable based on any clinical criteria (1,2). The purpose of this pilot study is to create an online, searchable data repository of dental radiographs to be used for patient care, teaching and research. [See PDF for complete abstract]
Resumo:
A two-pronged approach for the automatic quantitation of multiple sclerosis (MS) lesions on magnetic resonance (MR) images has been developed. This method includes the design and use of a pulse sequence for improved lesion-to-tissue contrast (LTC) and seeks to identify and minimize the sources of false lesion classifications in segmented images. The new pulse sequence, referred to as AFFIRMATIVE (Attenuation of Fluid by Fast Inversion Recovery with MAgnetization Transfer Imaging with Variable Echoes), improves the LTC, relative to spin-echo images, by combining Fluid-Attenuated Inversion Recovery (FLAIR) and Magnetization Transfer Contrast (MTC). In addition to acquiring fast FLAIR/MTC images, the AFFIRMATIVE sequence simultaneously acquires fast spin-echo (FSE) images for spatial registration of images, which is necessary for accurate lesion quantitation. Flow has been found to be a primary source of false lesion classifications. Therefore, an imaging protocol and reconstruction methods are developed to generate "flow images" which depict both coherent (vascular) and incoherent (CSF) flow. An automatic technique is designed for the removal of extra-meningeal tissues, since these are known to be sources of false lesion classifications. A retrospective, three-dimensional (3D) registration algorithm is implemented to correct for patient movement which may have occurred between AFFIRMATIVE and flow imaging scans. Following application of these pre-processing steps, images are segmented into white matter, gray matter, cerebrospinal fluid, and MS lesions based on AFFIRMATIVE and flow images using an automatic algorithm. All algorithms are seamlessly integrated into a single MR image analysis software package. Lesion quantitation has been performed on images from 15 patient volunteers. The total processing time is less than two hours per patient on a SPARCstation 20. The automated nature of this approach should provide an objective means of monitoring the progression, stabilization, and/or regression of MS lesions in large-scale, multi-center clinical trials. ^
Resumo:
We have developed an empirically based simulation system to create images equivalent in SNR and SPR to those that would be acquired with various possible SEDR configurations. This system uses a collection of spot collimated full-field images (SCFFIs) of an anthropomorphic chest phantom, taken at high exposure levels and rescaled in noise and intensity, then digitally collimated and combined to produce the simulated SEDR images. This system allows for the study of design trade-offs between different equalization feedback schemes and scatter rejection geometries in addition to estimating the clinical benefits of SEDR over traditional imaging techniques. Data from this simulation system has demonstrated that SEDR techniques offer potential significant improvements over currently used digital radiography techniques for chest imaging. ^