12 resultados para INSULIN RESISTANCE
em DigitalCommons@The Texas Medical Center
Resumo:
OBJECTIVE: Bariatric surgery reverses obesity-related comorbidities, including type 2 diabetes mellitus. Several studies have already described differences in anthropometrics and body composition in patients undergoing Roux-en-Y gastric bypass compared with laparoscopic adjustable gastric banding, but the role of adipokines in the outcomes after the different types of surgery is not known. Differences in weight loss and reversal of insulin resistance exist between the 2 groups and correlate with changes in adipokines. METHODS: Fifteen severely obese women (mean body mass index [BMI]: 46.7 kg/m(2)) underwent 2 types of laparoscopic weight loss surgery (Roux-en-Y gastric bypass=10, adjustable gastric banding=5). Weight, waist and hip circumference, body composition, plasma metabolic markers, and lipids were measured at set intervals during a 24-month period after surgery. RESULTS: At 24 months, patients who underwent Roux-en-Y were overweight (BMI 29.7 kg/m(2)), whereas patients who underwent gastric banding remained obese (BMI 36.3 kg/m(2)). Patients who underwent Roux-en-Y lost significantly more fat mass than patients who underwent gastric banding (mean difference 16.8 kg, P<.05). Likewise, leptin levels were lower in the patients who underwent Roux-en-Y (P=.003), and levels correlated with weight loss, loss of fat mass, insulin levels, and Homeostasis Model of Assessment 2. Adiponectin correlated with insulin levels and Homeostasis Model of Assessment 2 (r=-0.653, P=.04 and r=-0.674, P=.032, respectively) in the patients who underwent Roux-en-Y at 24 months. CONCLUSION: After 2 years, weight loss and normalization of metabolic parameters were less pronounced in patients who underwent gastric banding compared with patients who underwent Roux-en-Y gastric bypass. Our findings require confirmation in a prospective randomized trial.
Resumo:
Studies suggest that depression affects glucose metabolism, and therefore is a risk factor for insulin resistance. The association between depression and insulin resistance has been investigated in a number of studies, but there is no agreement on the results. The objective of this study is to survey the epidemiological studies, identify the ones that measured the association of depression (as exposure) with insulin resistance (as outcome), and perform a systematic review to assess the reliability and strength of the association. For high quality reporting, and assessment, this systematic review used the outlined procedures, guidelines and recommendations for reviews in health care, suggested by the Centre for Reviews and Dissemination, along with recommendations from the STROBE group (Strengthening the Reporting of Observational Studies in Epidemiology). Ovid MEDLINE 1996 to April Week 1 2010, was used to identify the relevant epidemiological studies. To identify the most relevant set of articles for this systematic review, a set of inclusion and exclusion criteria were applied. Six studies that met the specific criteria were selected. Key information from identified studies was tabulated, and the methodological quality, internal and external validity, and the strength of the evidence of the selected studies were assessed. The result from the tabulated data of the reviewed studies indicates that the studies either did not apply a case definition for insulin resistance in their investigation, or did not state a specific value for the index used to define insulin resistance. The quality assessment of the reviewed studies indicates that to assess the association between insulin resistance and depression, specifying a case definition for insulin resistance is important. The case definition for insulin resistance is defined by the World Health Organization and the European Group for the Study of Insulin Resistance as the insulin sensitivity index of the lowest quartile or lowest decile of a general population, respectively. Three studies defined the percentile cut-off point for insulin resistance, but did not give the insulin sensitivity index value. In these cases, it is not possible to compare the results. Three other studies did not define the cut-off point for insulin resistance. In these cases, it is hard to confirm the existence of insulin resistance. In conclusion, to convincingly answer our question, future studies need to adopt a clear case definition, define a percentile cut-off point and reference population, and give value of the insulin resistance measure at the specified percentile.^
Resumo:
Approximately 33% of clinical breast carcinomas require estrogens to proliferate. Epidemiological data show that insulin resistance and diabetes mellitus is 2–3 times more prevalent in women with breast cancer than those with benign breast lesions, suggesting a clinical link between insulin and estradiol. Insulin and estradiol have a synergistic effect on the growth of MCF7 breast cancer cells, and long-term estradiol treatment upregulates the expression of the key insulin signaling protein IRS-1. The goal of this study was to further define the mechanism(s) of cross-talk between insulin and estradiol in regulating the growth of breast cancer. Using MCF7 cells, acute treatment with insulin or estradiol alone was found to stimulate two activities associated with growth: Erk MAP kinase and PI 3-kinase. However, combined acute treatment had an antagonistic effect on both activities. Acute estradiol treatment inhibited the insulin-stimulated tyrosine phosphorylation of IRS-1 while increasing its serine phosphorylation; the serine phosphorylation was attenuated by the PI 3-kinase inhibitor wortmannin. The acute antagonism observed with combined estradiol and insulin are not consistent with the long-term synergistic effect on growth. In contrast, chronic estradiol treatment enhanced the insulin-sensitivity of breast cancer cells as measured by increases in total cellular insulin-stimulated tyrosine phosphorylation of IRS-1 and activation of PI 3-kinase. Estradiol stimulation of gene transcription was found to require PI 3-kinase activity but not MAP kinase activity. Insulin alone had no effect on ER transcriptional activity, but chronic treatment in combination with estradiol resulted in synergism of ER transcription. The synergistic effect of insulin and estradiol on MCF7 cell growth was also found to require PI 3-kinase but not MAP kinase activity. Therefore, chronic estradiol treatment increases insulin stimulation of PI 3-kinase, and PI 3-kinase is required for estradiol stimulation of gene transcription alone and in combined synergy with insulin. These data demonstrate that PI 3-kinase is the locus for the cross-talk between insulin and estradiol which results in enhanced breast cancer growth with long-term exposure to both hormones. This may have important clinical implications for women with high risk for breast cancer and/or diabetes mellitus. ^
Resumo:
Obesity and diabetes are associated with increased fatty acid availability in excess of muscle fatty acid oxidation capacity. This mismatch is implicated in the pathogenesis of cardiac contractile dysfunction and also in the development of skeletal-muscle insulin resistance. We tested the hypothesis that 'Western' and high fat diets differentially cause maladaptation of cardiac- and skeletal-muscle fatty acid oxidation, resulting in cardiac contractile dysfunction. Wistar rats were fed on low fat, 'Western' or high fat (10, 45 or 60% calories from fat respectively) diet for acute (1 day to 1 week), short (4-8 weeks), intermediate (16-24 weeks) or long (32-48 weeks) term. Oleate oxidation in heart muscle ex vivo increased with high fat diet at all time points investigated. In contrast, cardiac oleate oxidation increased with Western diet in the acute, short and intermediate term, but not in the long term. Consistent with fatty acid oxidation maladaptation, cardiac power decreased with long-term Western diet only. In contrast, soleus muscle oleate oxidation (ex vivo) increased only in the acute and short term with either Western or high fat feeding. Fatty acid-responsive genes, including PDHK4 (pyruvate dehydrogenase kinase 4) and CTE1 (cytosolic thioesterase 1), increased in heart and soleus muscle to a greater extent with feeding a high fat diet compared with a Western diet. In conclusion, we implicate inadequate induction of a cassette of fatty acid-responsive genes, and impaired activation of fatty acid oxidation, in the development of cardiac dysfunction with Western diet.
Resumo:
Previous studies of normal children have linked body fat but not body fat distribution (BFD), to higher blood pressures, lipids, and insulin resistance (Berenson et al., 1988) BFD is a well-established risk factor for cardiovascular disease in adults (Björntorp, 1988). This study investigates the relation of BFD and serum lipids at baseline in children from Project HeartBeat!, a study of the growth and development of cardiovascular risk factors in 678 children in three cohorts measured initially at ages 8, 11, and 14 years. Initially, two of four indices of BFD were significantly related to the lipids: ratio of upper to lower body skinfolds (ln US:LS) and conicity (C Index). A factor analysis reduced the information in the serum lipids to two vectors: (1) total cholesterol + LDL-cholesterol and (2) HDL-cholesterol − triglycerides, which together accounted for 85% of the lipid variation. Using each serum lipid and vector as separate dependent variables, linear and quadratic regression models were constructed to examine the predictive ability of the two BFD variables, controlling for total body fat, gender, ethnicity (Black, non-Black) and maturation. Linear models provided an acceptable fit. Percent body fat (%BF) was a significant predictor in each and every lipid model, independent of age, maturation, or ethnicity (p ≤ 0.05). No BFD variable entered the equation for total or LDL-cholesterol, although there was a significant maturity by BFD interaction for LDL (ln US:LS was a significant predictor in more mature individuals). Both %BF and BFD (by way of Conicity) were significant predictors of HDL-cholesterol and triglycerides (p ≤ 0.01). All models were statistically significant at a high level (p ≤ 0.01), but adjusted R 2's for all models were low (0.05–0.15). Body fat distribution is a significant predictor of lipids in normal children, but secondarily to %BF, and for LDL-cholesterol in particular, the relation is dependent on maturity status. ^
Resumo:
Thiazolidinediones (TZDs), a novel class of anti-diabetic drugs, have been known as ligands of peroxisome proliferator-activated receptor γ (PPARγ), a transcription factor that belongs to the nuclear receptor superfamily. These synthetic compounds improve insulin sensitivity in patients with type II diabetes likely through activating PAPRγ. Interestingly, they were also shown to inhibit cell growth and proliferation in a wide variety of tumor cell lines. The aim of this study is to assess the potential use of TZDs in the prevention of carcinogenesis using mouse skin as a model. ^ We found that troglitazone, one of TZD drugs, strongly inhibited cultured mouse skin keratinocyte proliferation as demonstrated by [3H]thymidine incorporation assay. It also induced a cell cycle G1 phase arrest and inhibited expression of cell cycle proteins, including cyclin D1, cdk2 and cdk4. Further experiments showed that PPARγ expression in keratinocytes was surprisingly undetectable in vitro or in vivo. Consistent with this, no endogenous PPARγ function in keratinocytes was found, suggesting that the inhibition of troglitazone on keratinocyte proliferation and cell cycle was PPARγ-independent. We further found that troglitazone inhibited insulin/insulin growth factor I (IGF-1) mitogenic signaling, which may explains, at least partly, its inhibitory effect on keratinocyte proliferation. We showed that troglitazone rapidly inhibited IGF-1 induced phosphorylation of p70S6K by mammalian target of rapamycin (mTOR). However, troglitazone did not directly inhibit mTOR kinase activity as shown by in vitro kinase assay. The inhibition of p70S6K is likely to be the result of strong activation of AMP activated protein kinase (AMPK) by TZDs. Stable expression of a dominant negative AMPK in keratinocytes blocked the inhibitory effect of troglitazone on IGF-1 induced phosphorylation of p70S6K. ^ Finally, we found that dietary TZDs inhibited by up to 73% mouse skin tumor development promoted by elevated IGF-1 signaling in BK5-IGF-1 transgenic mice, while they had no or little effect on skin tumor development promoted by 12-O-tetradecanoylphorbol-13-acetate (TPA) or ultraviolet (UV). Since IGF-1 signaling is frequently found to be elevated in patients with insulin resistance and in many human tumors, our data suggest that TZDs may provide tumor preventive benefit particularly to these patients. ^
Resumo:
Obesity and diabetes are metabolic disorders associated with fatty acid availability in excess of the tissues' capacity for fatty acid oxidation. This mismatch is implicated in the pathogenesis of cardiac contractile dysfunction and also in skeletal muscle insulin resistance. My dissertation will present work to test the overall hypothesis that "western" and high fat diets differentially affect cardiac and skeletal muscle fatty acid oxidation, the expression of fatty acid responsive genes, and cardiac contractile function. Wistar rats were fed a low fat, "western," or high fat (10%, 45%, or 60% calories from fat, respectively) diet for acute (1 day to 1 week), short (4 to 8 weeks), intermediate (16 to 24 weeks), or long (32 to 48 weeks) term. With high fat diet, cardiac oleate oxidation increased at all time points investigated. In contrast, with western diet cardiac oleate oxidation increased in the acute, short and intermediate term, but not in the long term. Consistent with a maladaptation of fatty acid oxidation, cardiac power (measured ex vivo) decreased with long term western diet only. In contrast to the heart, soleus muscle oleate oxidation increased only in the acute and short term with either western or high fat feeding. Transcript analysis revealed that several fatty acid responsive genes, including pyruvate dehydrogenase kinase 4, uncoupling protein 3, mitochondrial thioesterase 1, and cytosolic thioesterase 1 increased in heart and soleus muscle to a greater extent with high fat diet, versus western diet, feeding. In conclusion, the data implicate inadequate induction of a cassette of fatty acid responsive genes in both the heart and skeletal muscle by western diet resulting in impaired activation of fatty acid oxidation, and the development of cardiac dysfunction. ^
Resumo:
Cardiovascular disease (CVD) is the single greatest cause of death in the United States, accounting for nearly 2400 deaths each day. It is estimated that 79.4 million American adults have some form of the disease, and CVD mortality rates are greater than those of cancer, chronic lower respiratory diseases, accidents and diabetes mellitus combined. Psychosocial stress is a nontraditional risk factor for CVD, and can contribute to the clustering of traditional risk factors as well as to vascular manifestations of the disease. The Transcendental Meditation (TM) technique has been researched as a cost effective intervention aimed at decreasing psychosocial stress. This literature review attempts to analyze randomized controlled clinical trials of TM on cardiovascular disease outcomes. Eleven studies met inclusion criteria and are described below, with statistically significant positive outcomes observed in each study. Studies are grouped by primary outcome reported in the categories of cardiovascular function, blood pressure, and exercise tolerance. The TM intervention significantly decreased insulin resistance, heart rate variability, and carotid intima media thickness and improved exercise tolerance compared to control groups. Seven studies also reported significant decreases in blood pressure among hypertensive and normotensive subjects. Five studies focused solely on African American subjects, a population that has disproportionately higher rates of CVD and hypertension, and found significant improvements in CVD outcomes. Further research is recommended to establish the efficacy of TM on CVD outcomes. Future trials should include larger sample populations, wider ethnic distributions of subjects, and longer follow-up to ascertain the impact of this particular stress reduction technique on cardiovascular disease.^
Resumo:
Children who experience early pubertal development have an increased risk of developing cancer (breast, ovarian, and testicular), osteoporosis, insulin resistance, and obesity as adults. Early pubertal development has been associated with depression, aggressiveness, and increased sexual prowess. Possible explanations for the decline in age of pubertal onset include genetics, exposure to environmental toxins, better nutrition, and a reduction in childhood infections. In this study we (1) evaluated the association between 415 single nucleotide polymorphisms (SNPs) from hormonal pathways and early puberty, defined as menarche prior to age 12 in females and Tanner Stage 2 development prior to age 11 in males, and (2) measured endocrine hormone trajectories (estradiol, testosterone, and DHEAS) in relation to age, race, and Tanner Stage in a cohort of children from Project HeartBeat! At the end of the 4-year study, 193 females had onset of menarche and 121 males had pubertal staging at age 11. African American females had a younger mean age at menarche than Non-Hispanic White females. African American females and males had a lower mean age at each pubertal stage (1-5) than Non-Hispanic White females and males. African American females had higher mean BMI measures at each pubertal stage than Non-Hispanic White females. Of the 415 SNPs evaluated in females, 22 SNPs were associated with early menarche, when adjusted for race ( p<0.05), but none remained significant after adjusting for multiple testing by False Discovery Rate (p<0.00017). In males, 17 SNPs were associated with early pubertal development when adjusted for race (p<0.05), but none remained significant when adjusted for multiple testing (p<0.00017). ^ There were 4955 hormone measurements taken during the 4-year study period from 632 African American and Non-Hispanic White males and females. On average, African American females started and ended the pubertal process at a younger age than Non-Hispanic White females. The mean age of Tanner Stage 2 breast development in African American and Non-Hispanic White females was 9.7 (S.D.=0.8) and 10.2 (S.D.=1.1) years, respectively. There was a significant difference by race in mean age for each pubertal stage, except Tanner Stage 1 for pubic hair development. Both Estradiol and DHEAS levels in females varied significantly with age, but not by race. Estradiol and DHEAS levels increased from Tanner Stage 1 to Tanner Stage 5.^ African American males had a lower mean age at each Tanner Stage of development than Non-Hispanic White males. The mean age of Tanner Stage 2 genital development in African American and Non-Hispanic White males was 10.5 (S.D.=1.1) and 10.8 (S.D.=1.1) years, respectively, but this difference was not significant (p=0.11). Testosterone levels varied significantly with age and race. Non-Hispanic White males had higher levels of testosterone than African American males from Tanner Stage 1-4. Testosterone levels increased for both races from Tanner Stage 1 to Tanner Stage 5. Testosterone levels had the steepest increase from ages 11-15 for both races. DHEAS levels in males varied significantly with age, but not by race. DHEAS levels had the steepest increase from ages 14-17. ^ In conclusion, African American males and females experience pubertal onset at a younger age than Non-Hispanic White males and females, but in this study, we could not find a specific gene that explained the observed variation in age of pubertal onset. Future studies with larger study populations may provide a better understanding of the contribution of genes in early pubertal onset.^
Resumo:
Retrospective data from the Cameron Country Hispanic Cohort (1) were analyzed to assess the burden of cancer in the Mexican American population living in Brownsville TX. Data provided by the study participants for themselves and their parents and other extended relatives on cancer and related risk factors were used to determine both the prevalence of cancer and these risk factors as well as any associations between them. Lifetime incidence of cancer among the study participants was of 2.8%. Lifetime incidence of cancer among the parents of the study population was calculated for cancer in general and for specific cancer sites to determine the ranking of occurrence of each type of cancer. Some cancer types in this population were ranked higher than what would be expected when compared with national data from Hispanics in the U.S, these were: Liver cancer (3rd vs. 7th nationally in males and 6th vs. 13th nationally in females), stomach cancer (4th vs. 8th nationally in males and 5th vs. 11th nationally in females) and ovarian cancer (3rd vs. 8th nationally in females). A significant association with cancer was found for being born in the United States compared to being born elsewhere (O.R. 1.62, 95% C.I. 1.01–2.60) among study participants and the same association was also found between birth of parents in the United States regardless of gender for cancers in general (O.R. 1.38 95% C.I. 1.12–1.70), stomach cancer (O.R. 1.92 95% C.I. 1.01–3.67) and colorectal cancer (O.R. 2.93 95% C.I. 1.28–6.72). Having been born in the United States and having a family history of cancer was also found to be significantly associated with other risk factors for cancer such as obesity, diabetes and insulin resistance, both among the parents and the participant population, suggesting these interactions are complex. These high rates of cancer and particular prominence of less usual cancer such as liver and ovary in health disparities warrant evaluation of early detection strategies.^
Resumo:
Endoplasmic reticulum (ER) stress-induced inflammation plays an important role in the progression of many diseases, such as type II diabetes, insulin resistance, cancers, and so on. NF-κB is believed to be a central regulator of ER stress-induced inflammation. However, studies on how ER stress induces NF-κB activation are limited and, in some cases, controversial. In the present study, we utilized two commonly used ER stress inducers, thapsigargin and tunicamycin, to study the mechanism. We found that two caspase-recruitment domain (CARD)-containing proteins, CARMA3 and BCL10, play a crucial roles on ER stress-induced NF-κB activation by regulating IκBα kinase activity. Consistently, we observed that a physiological ER stress inducer, hypoxia, could activate NF-κB in a CARMA3-dependent manner. Additionally, we showed that the activation of the UPR signaling pathways were intact in both CARMA3- and BCL10-deficient cells under ER stress. Together, this study provides insight into the mechanism of how ER stress induces NF-κB activation. It allows us to better understand ER stress-induced inflammation and develop the corresponding therapeutic interference to treat diseases
Resumo:
With the population of the world aging, the prominence of diseases such as Type II Diabetes (T2D) and Alzheimer’s disease (AD) are on the rise. In addition, patients with T2D have an increased risk of developing AD compared to age-matched individuals, and the number of AD patients with T2D is higher than among aged-matched non-AD patients. AD is a chronic and progressive dementia characterized by amyloid-beta (Aβ) plaques, neurofibrillary tangles (NFTs), neuronal loss, brain inflammation, and cognitive impairment. T2D involves the dysfunctional use of pancreatic insulin by the body resulting in insulin resistance, hyperglycemia, hyperinsulinemia, pancreatic beta cell (β-cell) death, and other complications. T2D and AD are considered protein misfolding disorders (PMDs). PMDs are characterized by the presence of misfolded protein aggregates, such as in T2D pancreas (islet amyloid polypeptide - IAPP) and in AD brain (amyloid– Aβ) of affected individuals. The misfolding and accumulation of these proteins follows a seeding-nucleation model where misfolded soluble oligomers act as nuclei to propagate misfolding by recruiting other native proteins. Cross-seeding occurs when oligomers composed by one protein seed the aggregation of a different protein. Our hypothesis is that the pathological interactions between T2D and AD may in part occur through cross-seeding of protein misfolding. To test this hypothesis, we examined how each respective aggregate (Aβ or IAPP) affects the disparate disease pathology through in vitro and in vivo studies. Assaying Aβ aggregates influence on T2D pathology, IAPP+/+/APPSwe+/- double transgenic (DTg) mice exhibited exacerbated T2D-like pathology as seen in elevated hyperglycemia compared to controls; in addition, IAPP levels in the pancreas are highest compared to controls. Moreover, IAPP+/+/APPSwe+/- animals demonstrate abundant plaque formation and greater plaque density in cortical and hippocampal areas in comparison to controls. Indeed, IAPP+/+/APPSwe+/- exhibit a colocalization of both misfolded proteins in cerebral plaques suggesting IAPP may directly interact with Aβ and aggravate AD pathology. In conclusion, these studies suggest that cross-seeding between IAPP and Aβ may occur, and that these protein aggregates exacerbate and accelerate disease pathology, respectively. Further mechanistic studies are necessary to determine how these two proteins interact and aggravate both pancreatic and brain pathologies.