2 resultados para INDUCTION PERIOD

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential impact of periodontal disease, a suspected risk factor for systemic diseases, presents challenges for health promotion and disease prevention strategies. This study examined clinical, microbiological, and immunological factors in a disease model to identify potential biomarkers that may be useful in predicting the onset and severity of both inflammatory and destructive periodontal disease. This project used an historical cohort design based on data obtained from 47 adult, female nonhuman primates followed over a 6-year period for 5 unique projects where the ligature-induced model of periodontitis was utilized. Standardization of protocols for sample collection allowed for comparison over time. Bleeding and pocket depth measures were selected as the dependent variables of relevance to humans based upon the literature and historical observations. Exposure variables included supragingival plaque, attachment level, total bacteria, black-pigmented bacteria, Gram-negative and Gram-positive bacteria, total IgG and IgA in crevicular fluid, specific IgG antibody in both crevicular fluid and serum, and IgG antibody to four select pathogenic microorganisms. Three approaches were used to analyze the data from this study. The first approach tested for differences in the means of the response variables within the group and among longitudinal observations within the group at each time point. The second approach examined the relationship among the clinical, microbiological, and immunological variables using correlation coefficients and stratified analyses. Multivariable models using GEE for repeated measures were produced as a predictive description of the induction and progression of gingivitis and periodontal disease. The multivariable models for bleeding (gingivitis) include supragingival plaque, total bacteria and total IgG while the second also contains supragingival plaque, Gram-positive bacteria, and total IgG. Two multivariable models emerged for periodontal disease. One multivariable model contains plaque, total bacteria, total IgG and attachment level. The second model includes black-pigmented bacteria, total bacteria, antibody to Campylobacter rectus, and attachment level. Utilization of the nonhuman primate model to prospectively examine causal hypotheses can provide a focus for human research on the mechanisms of progression from health to gingivitis to periodontitis. Ultimately, causal theories can guide strategies to prevent disease initiation and reduce disease severity. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work examines the role of cAMP in the induction of the type of long-term morphological changes that have been shown to be correlated with long-term sensitization in Aplysia.^ To examine this issue, cAMP was injected into individual tail sensory neurons in the pleural ganglion to mimic, at the single cell level, the effects of behavioral training. After a 22 hr incubation period, the same cells were filled with horseradish peroxidase and 2 hours later the tissue was fixed and processed. Morphological analysis revealed that cAMP induced an increase in two morphological features of the neurons, varicosities and branch points. These structural alterations, which are similar to those seen in siphon sensory neurons of the abdominal ganglion following long-term sensitization training of the siphon-gill withdrawal reflex, could subserve the altered behavioral response of the animal. These results expose another role played by cAMP in the induction of learning, the initiation of a structural substrate, which, in concert with other correlates, underlies learning.^ cAMP was injected into sensory neurons in the presence of the reversible protein synthesis inhibitor, anisomycin. The presence of anisomycin during and immediately following the nucleotide injection completely blocked the structural remodeling. These results indicate that the induction of morphological changes by cAMP is a process dependent on protein synthesis.^ To further examine the temporal requirement for protein synthesis in the induction of these changes, the time of anisomycin exposure was varied. The results indicate that the cellular processes triggered by cAMP are sensitive to the inhibition of protein synthesis for at least 7 hours after the nucleotide injection. This is a longer period of sensitivity than that for the induction of another correlate of long-term sensitization, facilitation of the sensory to motor neuron synaptic connection. Thus, these findings demonstrate that the period of sensitivity to protein synthesis inhibition is not identical for all correlates of learning. In addition, since the induction of the morphological changes can be blocked by anisomycin pulses administered at different times during and following the cAMP injection, this suggests that cAMP is triggering a cascade of protein synthesis, with successive rounds of synthesis being dependent on successful completion of preceding rounds. Inhibition at any time during this cascade can block the entire process and so prevent the development of the structural changes.^ The extent to which cAMP can mimic the structural remodeling induced by long-term training was also examined. Animals were subjected to unilateral sensitization training and the morphology of the sensory neurons was examined twenty-four hours later. Both cAMP injection and long-term training produced a twofold increase in varicosities and approximately a fifty percent increase in the number of branch points in the sensory neuron arborization within the pleural ganglion. (Abstract shortened by UMI.) ^