18 resultados para IMUNE SYSTEM DISEASES
em DigitalCommons@The Texas Medical Center
Resumo:
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a noninvasive technique for quantitative assessment of the integrity of blood-brain barrier and blood-spinal cord barrier (BSCB) in the presence of central nervous system pathologies. However, the results of DCE-MRI show substantial variability. The high variability can be caused by a number of factors including inaccurate T1 estimation, insufficient temporal resolution and poor contrast-to-noise ratio. My thesis work is to develop improved methods to reduce the variability of DCE-MRI results. To obtain fast and accurate T1 map, the Look-Locker acquisition technique was implemented with a novel and truly centric k-space segmentation scheme. In addition, an original multi-step curve fitting procedure was developed to increase the accuracy of T1 estimation. A view sharing acquisition method was implemented to increase temporal resolution, and a novel normalization method was introduced to reduce image artifacts. Finally, a new clustering algorithm was developed to reduce apparent noise in the DCE-MRI data. The performance of these proposed methods was verified by simulations and phantom studies. As part of this work, the proposed techniques were applied to an in vivo DCE-MRI study of experimental spinal cord injury (SCI). These methods have shown robust results and allow quantitative assessment of regions with very low vascular permeability. In conclusion, applications of the improved DCE-MRI acquisition and analysis methods developed in this thesis work can improve the accuracy of the DCE-MRI results.
Resumo:
Innate immune recognition of extracellular host-derived self-DNA and self-RNA is prevented by endosomal seclusion of the Toll-like receptors (TLRs) in the dendritic cells (DCs). However, in psoriasis plasmacytoid dendritic cells have been found to be able to sense self-DNA molecules in complex with the endogenous cationic antimicrobial peptide LL37, which are internalized into the endosomal compartments and thus can access TLR9. We investigated whether this endogenous peptide can also interact with extracellular self-RNA and lead to DC activation. We found that LL37 binds self-RNA as well as self-DNA going into an electrostatic interaction; forms micro-aggregates of nano-scale particles protected from enzymatic degradation and transport it into the endosomal compartments of both plasmacytoid and myeloid dendritic cells. In the plasmacytoid DCs, the self-RNA-LL37 complexes activate TLR7 and like the self-DNA-LL37 complexes, trigger the production of IFN-α in the absence of induction of maturation or production of IL-6 and TNF-α. In contrast to the self-DNA-LL37 complexes, the self-RNA-LL37 complexes are also internalized into the endosomal compartments of myeloid dendritic cells and trigger activation through TLR8, leading to the production of TNF-α and IL-6, and the maturation of the myeloid DCs. Furthermore, we found that these self nucleic acid-LL37 complexes can be found in vivo in the skin lesions of the cutaneous autoimmune disease psoriasis, where they are associated with mature mDCs in situ. On the other hand, in the systemic autoimmune disease systemic lupus erythematosus, self-DNA-LL37 complexes were found to be a constituent of the circulating immune complexes isolated from patient sera. This interaction between the endogenous peptide with the self nucleic acid molecules present in the immune complexes was found to be electrostatic and it confers resistance to enzymatic degradation of the nucleic acid molecules in the immune complexes. Moreover, autoantibodies to these endogenous peptides were found to trigger neutrophil activation and release of neutrophil extracellular traps composed of DNA, which are potential sources of the self nucleic acid-LL37 complexes present in SLE immune complexes. Our results demonstrate that the cationic antimicrobial peptide LL37 drives the innate immune recognition of self nucleic acid molecules through toll-like receptors in human dendritic cells, thus elucidating a pathway for innate sensing of host cell death. This pathway of autoreactivity was found to be pathologically relevant in human autoimmune diseases psoriasis and SLE, and thus this study provides new insights into the mechanisms autoimmune diseases.
Resumo:
Tourette Syndrome begins in childhood and is characterized by uncontrollable repetitive actions like neck craning or hopping and noises such as sniffing or chirping. Worst in early adolescence, these tics wax and wane in severity and occur in bouts unpredictably, often drawing unwanted attention from bystanders. Making matters worse, over half of children with Tourette Syndrome also suffer from comorbid, or concurrent, disorders such as attention deficit hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD). These disorders introduce anxious thoughts, impulsivity, inattention, and mood variability that further disrupt children with Tourette Syndrome from focusing and performing well at school and home. Thus, deficits in the cognitive control functions of response inhibition, response generation, and working memory have long been ascribed to Tourette Syndrome. Yet, without considering the effect of medication, age, and comorbidity, this is a premature attribution. This study used an infrared eye tracking camera and various computer tasks requiring eye movement responses to evaluate response inhibition, response generation, and working memory in Tourette Syndrome. This study, the first to control for medication, age, and comorbidity, enrolled 39 unmedicated children with Tourette Syndrome and 29 typically developing peers aged 10-16 years who completed reflexive and voluntary eye movement tasks and diagnostic rating scales to assess symptom severities of Tourette Syndrome, ADHD, and OCD. Children with Tourette Syndrome and comorbid ADHD and/or OCD, but not children with Tourette Syndrome only, took longer to respond and made more errors and distracted eye movements compared to typically-developing children, displaying cognitive control deficits. However, increasing symptom severities of Tourette Syndrome, ADHD, and OCD correlated with one another. Thus, cognitive control deficits were not specific to Tourette Syndrome patients with comorbid conditions, but rather increase with increasing tic severity, suggesting that a majority of Tourette Syndrome patients, regardless of a clinical diagnosis of ADHD and/or OCD, have symptoms of cognitive control deficits at some level. Therefore, clinicians should evaluate and counsel all families of children with Tourette Syndrome, with or without currently diagnosed ADHD and/or OCD, about the functional ramifications of comorbid symptoms and that they may wax and wane with tic severity.
Resumo:
Plasmacytoid dendritic cells (pDCs) are a rare population of circulating cells, which selectively express intracellular Toll-like receptors (TLR)-7 and TLR-9 and have the capacity to produce large amounts of type I IFNs (IFN-a/b) in response to viruses or host derived nucleic acid containing complexes. pDCs are normally absent in skin but accumulate in the skin of psoriasis patients where their chronic activation to produce IFN-a/b drives the disease formation. Whether pDCs and their activation to produce IFN-a/b play a functional role in healthy skin is unknown. Here we show that pDCs are rapidly and transiently recruited into healthy human and mouse skin upon epidermal injury. Infiltrating pDCs were found to sense nucleic acids in wounded skin via TLRs, leading to the production of IFN-a/b. The production of IFN-a/b was paralleled by a short lived expression of cathelicidins, which form complexes with extracellular nucleic acids and activated pDCs to produce IFN-a/b in vitro. In vivo, cathelicidins were sufficient but not necessary for the induction of IFN-a/b in wounded skin, suggesting redundancy of this pathway. Depletion of pDCs or inhibition of IFN-a/bR signaling significantly impaired the inflammatory response and delayed re-epithelialization of skin wounds. Thus we uncover a novel role of pDCs in sensing skin injury via TLR mediated recognition of nucleic acids and demonstrate their involvement in the early inflammatory process and wound healing response through the production of IFN-a/b.
Resumo:
Molluscan preparations have yielded seminal discoveries in neuroscience, but the experimental advantages of this group have not, until now, been complemented by adequate molecular or genomic information for comparisons to genetically defined model organisms in other phyla. The recent sequencing of the transcriptome and genome of Aplysia californica, however, will enable extensive comparative studies at the molecular level. Among other benefits, this will bring the power of individually identifiable and manipulable neurons to bear upon questions of cellular function for evolutionarily conserved genes associated with clinically important neural dysfunction. Because of the slower rate of gene evolution in this molluscan lineage, more homologs of genes associated with human disease are present in Aplysia than in leading model organisms from Arthropoda (Drosophila) or Nematoda (Caenorhabditis elegans). Research has hardly begun in molluscs on the cellular functions of gene products that in humans are associated with neurological diseases. On the other hand, much is known about molecular and cellular mechanisms of long-term neuronal plasticity. Persistent nociceptive sensitization of nociceptors in Aplysia displays many functional similarities to alterations in mammalian nociceptors associated with the clinical problem of chronic pain. Moreover, in Aplysia and mammals the same cell signaling pathways trigger persistent enhancement of excitability and synaptic transmission following noxious stimulation, and these highly conserved pathways are also used to induce memory traces in neural circuits of diverse species. This functional and molecular overlap in distantly related lineages and neuronal types supports the proposal that fundamental plasticity mechanisms important for memory, chronic pain, and other lasting alterations evolved from adaptive responses to peripheral injury in the earliest neurons. Molluscan preparations should become increasingly useful for comparative studies across phyla that can provide insight into cellular functions of clinically important genes.
Resumo:
Viral invasion of the central nervous system (CNS) and development of neurological symptoms is a characteristic of many retroviruses. The mechanism by which retrovirus infection causes neurological dysfunction has yet to be fully elucidated. Given the complexity of the retrovirus-mediated neuropathogenesis, studies using small animal models are extremely valuable. Our laboratory has used a mutant moloney murine leukemia retrovirus, ts1-mediated neurodegneration. We hypothesize that astrocytes play an important role in ts1-induced neurodegeneration since they are retroviral reservoirs and supporting cells for neurons. It has been shown that ts1 is able to infect astrocytes in vivo and in vitro. Astrocytes, the dominant cell population in the CNS, extend their end feet to endothelial cells and neuronal synapse to provide neuronal support. Signs of oxidative stress in the ts1-infected CNS have been well-documented from previous studies. After viral infection, retroviral DNA is generated from its RNA genome and integrated into the host genome. In this study, we identified the life cycle of ts1 in the infected astrocytes. During the infection, we observed reactive oxygen species (ROS) upregulations: one at low levels during the early infection phase and another at high levels during the late infection phase. Initially we hypothesized that p53 might play an important role in ts1-mediated astrocytic cell death. Subsequently, we found that p53 is unlikely to be involved in the ts1-mediated astrocytic cell death. Instead, p53 phosphorylation was increased by the early ROS upregulation via ATM, the protein encoded by the ataxia-telangiectasia (A-T) mutated gene. The early upregulation of p53 delayed viral gene expression by suppressing expression of the catalytic subunit of NADPH oxidase (NOX). We further demonstrated that the ROS upregulation induced by NOX activation plays an important role in establishing retroviral genome into the host. Inhibition of NOX decreased viral replication and delayed the onset of pathological symptoms in ts1-infected mice. These observations lead us to conclude that suppression of NOX not only prevents the establishment of the retrovirus but also decreases oxidative stress in the CNS. This study provides us with new perspectives on the retrovirus-host cell interaction and sheds light on retrovirus-induced neurodegeneration as a result of the astrocyte-neuron interaction.
Resumo:
Spinocerebellar Ataxia type 7 (SCA7) is a neurodegenerative disease caused by expansion of a CAG repeat encoding a polyglutamine tract in ATXN7, a component of the SAGA histone acetyltransferase (HAT) complex. Previous studies provided conflicting evidence regarding the effects of polyQ-ATXN7 on the activity of Gcn5, the HAT catalytic subunit of SAGA. Here I showed that reducing Gcn5 expression accelerates both cerebellar and retinal degeneration in a mouse model of SCA7. Deletion of Gcn5 in Purkinje cells in mice expressing wild type Atxn7, however, causes only mild ataxia and does not lead to the early lethality observed in SCA7 mice. Reduced Gcn5 expression strongly enhances retinopathy in SCA7 mice, but does not affect the transcriptional targets of Atxn7, as expression of these genes is not further altered by Gcn5 depletion. These findings demonstrate that loss of Gcn5 functions can contribute to the time of onset and severity of SCA7 phenotypes, but suggest that non-transcriptional functions of SAGA may play a role in neurodegeneration in this disease.
Resumo:
Over 1.2 million Americans are currently living with a traumatic spinal cord injury (SCI). Despite the need for effective therapies, there are currently no proven effective treatments that can improve recovery of function in SCI patients. Many therapeutic compounds have shown promise in preclinical models of SCI, but all of these have fallen short in clinical trials. P-glycoprotein (Pgp) is an active transporter expressed on capillary endothelial cell membranes at the blood-spinal cord barrier (BSCB). Pgp limits passive diffusion of blood-borne drugs into the CNS, by actively extruding drugs from the endothelial cell membrane. Pgp can become pathologically up-regulated, thus greatly impeding therapeutic drug delivery (‘multidrug resistance’). Importantly, many drugs that have been evaluated for the treatment of SCI are Pgp substrates. We hypothesized that Pgp-mediated drug resistance diminishes the delivery and efficacy of neuroprotective drugs following SCI. We observed a progressive, spatial spread of Pgp overexpression within the injured spinal cord. To assess Pgp function, we examined spinal cord uptake of systemically-delivered riluzole, a drug that is currently being evaluated in clinical trials as an SCI intervention. Blood-to-spinal cord riluzole penetration was reduced following SCI in wild-type but not Pgp-null rats, highlighting a critical role for Pgp in mediating spinal cord drug resistance after injury. Others have shown that pro-inflammatory signaling drives Pgp up-regulation in cancer and epilepsy. We have detected inflammation in both acutely- and chronically-injured spinal cord tissue. We therefore evaluated the ability of the dual COX-/5-LOX inhibitor licofelone to attenuate Pgp-mediated drug resistance following SCI. Licofelone treatment both reduced spinal cord Pgp levels and enhanced spinal cord riluzole bioavailability following SCI. Thus, we propose that licofelone may offer a new combinatorial treatment strategy to enhance spinal cord drug delivery following SCI. Additionally, we assessed the ability of licofelone, riluzole, or both to enhance recovery of locomotor function following SCI. We found that licofelone treatment conferred a significant improvement in hindlimb function that was sustained through the end of the study. In contrast, riluzole did not improve functional outcome. We therefore conclude that licofelone holds promise as a potential neuroprotective intervention for SCI.
Resumo:
Hemophilia A is a clotting disorder caused by functional factor VIII (FVIII) deficiency. About 25% of patients treated with therapeutic recombinant FVIII develop antibodies (inhibitors) that render subsequent FVIII treatments ineffective. The immune mechanisms of inhibitor formation are not entirely understood, but circumstantial evidence indicates a role for increased inflammatory response, possibly via stimulation of Toll-like receptors (TLRs), at the time of FVIII immunization. I hypothesized that stimulation through TLR4 in conjunction with FVIII treatments would increase the formation of FVIII inhibitors. To test this hypothesis, FVIII K.O. mice were injected with recombinant human FVIII with or without concomitant doses of TLR4 agonist (lipopoysaccharide; LPS). The addition of LPS combined with FVIII significantly increased the rate and the production of anti-FVIII IgG antibodies and neutralizing FVIII inhibitors. In the spleen, repeated in vivo TLR4 stimulation with LPS increased the relative percentage of macrophages and dendritic cells (DCs) over the course of 4 injections. However, repeated in vivo FVIII stimulation significantly increased the density of TLR4 expressed on the surface of all spleen antigen presenting cells (APCs). Culture of splenocytes isolated from mice revealed that the combined stimulation of LPS and FVIII also synergistically increased early secretion of the inflammatory cytokines IL-6, TNF-α, and IL-10, which was not maintained throughout the course of the repeated injections. While cytokine secretion was relatively unchanged in response to FVIII re-stimulation in culture, LPS re-stimulation in culture induced increased and prolonged inflammatory cytokine secretion. Re-stimulation with both LPS and FVIII induced cytokine secretion similar to LPS stimulation alone. Interestingly, long term treatment of mice with LPS alone resulted in splenocytes that showed reduced response to FVIII in culture. Together these results indicated that creating a pro-inflammatory environment through the combined stimulation of chronic, low-dose LPS and FVIII changed not only the populations but also the repertoire of APCs in the spleen, triggering the increased production of FVIII inhibitors. These results suggested an anti-inflammatory regimen should be instituted for all hemophilia A patients to reduce or delay the formation of FVIII inhibitors during replacement therapy.
Resumo:
Cell-based therapies have demonstrated potency and efficacy as cancer treatment modalities. T cells can be dichotomized by their T cell receptor (TCR) complexes where alpha/beta T cells (95% of T cells) and gamma/delta T cells (+T cells proliferated to clinically significant numbers and ROR1+ tumor cells were effectively targeted and killed by both ROR1-specific CAR+ T cell populations, although ROR1RCD137 were superior to ROR1RCD28 in clearance of leukemia xenografts in vivo. The second specific aim focused on generating bi-specific CD19-specific CAR+ gamma/delta T cells with polyclonal TCRgamma/delta repertoire on CD19+ artificial antigen presenting cells (aAPC). Enhanced cytolysis of CD19+ leukemia was observed by CAR+ gamma/delta T cells compared to CARneg gamma/delta T cells, and leukemia xenografts were significantly reduced compared to control mice in vivo. The third specific aim looked at the broad anti-tumor effects of polyclonal gamma/delta T cells expanded on aAPC without CAR+ T cells, where Vdelta1, Vdelta2, and Vdelta3 populations had naïve, effector memory, and central memory phenotypes and effector function strength in the following order: Vdelta2>Vdelta3>Vdelta1. Polyclonal gamma/delta T cells eliminated ovarian cancer xenografts in vivo and increased survival compared to control mice. Thus, translating these methodologies to clinical trials will provide cancer patients novel, safe, and effective options for their treatment.
Resumo:
Isolated cerebral folate deficiency was detected in a 13-year-old girl with cognitive and motor difficulties and juvenile rheumatoid arthritis. Her serum contains autoantibodies that block membrane-bound folate receptors that are on the choroid plexus and diminish the uptake of folate into the spinal fluid. Whereas her serum folate exceeded 21 ng/mL, her spinal fluid contained 3.2 ng/mL of 5-methyltetrahydrofolate as a consequence of the autoantibodies diminishing the uptake of this folate.
Resumo:
The molecular mechanisms responsible for the expansion and deletion of trinucleotide repeat sequences (TRS) are the focus of our studies. Several hereditary neurological diseases including Huntington's disease, myotonic dystrophy, and fragile X syndrome are associated with the instability of TRS. Using the well defined and controllable model system of Escherichia coli, the influences of three types of DNA incisions on genetic instability of CTG•CAG repeats were studied: DNA double-strand breaks (DSB), single-strand nicks, and single-strand gaps. The DNA incisions were generated in pUC19 derivatives by in vitro cleavage with restriction endonucleases. The cleaved DNA was then transformed into E. coli parental and mutant strains. Double-strand breaks induced deletions throughout the TRS region in an orientation dependent manner relative to the origin of replication. The extent of instability was enhanced by the repeat length and sequence (CTG•CAG vs. CGG•CCG). Mutations in recA and recBC increased deletions, mutations in recF stabilized the TRS, whereas mutations in ruvA had no effect. DSB were repaired by intramolecular recombination, versus an intermolecular gene conversion or crossover mechanism. 30 nt gaps formed a distinct 30 nt deletion product, whereas single strand nicks and gaps of 15 nts did not induce expansions or deletions. Formation of this deletion product required the CTG•CAG repeats to be present in the single-stranded region and was stimulated by E. coli DNA ligase, but was not dependent upon the RecFOR pathway. Models are presented to explain the DSB induced instabilities and formation of the 30 nucleotide deletion product. In addition to the in vitro creation of DSBs, several attempts to generate this incision in vivo with the use of EcoR I restriction modification systems were conducted. ^
Resumo:
Public health surveillance programs for vaccine preventable diseases (VPD) need functional quality assurance (QA) in order to operate with high quality activities to prevent preventable communicable diseases from spreading in the community. Having a functional QA plan can assure the performance and quality of a program without putting excessive stress on the resources. A functional QA plan acts as a check on the quality of day-to-day activities performed by the VPD surveillance program while also providing data that would be useful for evaluating the program. This study developed a QA plan that involves collection, collation, analysis and reporting of information based on standardized (predetermined) formats and indicators as an integral part of routine work for the vaccine preventable disease surveillance program at the City of Houston Department of Health and Human Services. The QA plan also provides sampling and analysis plans for assessing various QA indicators, as well as recommendations to the Houston Department of Health and Humans Services for implementation of the QA plan. The QA plan developed for VPD surveillance in the City of Houston is intended to be a low cost system that could serve as a template for QA plans as part of other public health programs not only in the city or the nation, but could be adapted for use anywhere across the globe. Having a QA plan for VPD surveillance in the City of Houston would serve well for the funding agencies like the CDC by assuring that the resources are being expended efficiently, while achieving the real goal of positively impacting the health and lives of the recipient/target population. ^
Resumo:
Background. Childhood immunization programs have dramatically reduced the morbidity and mortality associated with vaccine-preventable diseases. Proper documentation of immunizations that have been administered is essential to prevent duplicate immunization of children. To help improve documentation, immunization information systems (IISs) have been developed. IISs are comprehensive repositories of immunization information for children residing within a geographic region. The two models for participation in an IIS are voluntary inclusion, or "opt-in," and voluntary exclusion, or "opt-out." In an opt-in system, consent must be obtained for each participant, conversely, in an opt-out IIS, all children are included unless procedures to exclude the child are completed. Consent requirements for participation vary by state; the Texas IIS, ImmTrac, is an opt-in system.^ Objectives. The specific objectives are to: (1) Evaluate the variance among the time and costs associated with collecting ImmTrac consent at public and private birthing hospitals in the Greater Houston area; (2) Estimate the total costs associated with collecting ImmTrac consent at selected public and private birthing hospitals in the Greater Houston area; (3) Describe the alternative opt-out process for collecting ImmTrac consent at birth and discuss the associated cost savings relative to an opt-in system.^ Methods. Existing time-motion studies (n=281) conducted between October, 2006 and August, 2007 at 8 birthing hospitals in the Greater Houston area were used to assess the time and costs associated with obtaining ImmTrac consent at birth. All data analyzed are deidentified and contain no personal information. Variations in time and costs at each location were assessed and total costs per child and costs per year were estimated. The cost of an alternative opt-out system was also calculated.^ Results. The median time required by birth registrars to complete consent procedures varied from 72-285 seconds per child. The annual costs associated with obtaining consent for 388,285 newborns in ImmTrac's opt-in consent process were estimated at $702,000. The corresponding costs of the proposed opt-out system were estimated to total $194,000 per year. ^ Conclusions. Substantial variation in the time and costs associated with completion of ImmTrac consent procedures were observed. Changing to an opt-out system for participation could represent significant cost savings. ^