3 resultados para Hyphenated analytical techniques
em DigitalCommons@The Texas Medical Center
Resumo:
Nuclear morphometry (NM) uses image analysis to measure features of the cell nucleus which are classified as: bulk properties, shape or form, and DNA distribution. Studies have used these measurements as diagnostic and prognostic indicators of disease with inconclusive results. The distributional properties of these variables have not been systematically investigated although much of the medical data exhibit nonnormal distributions. Measurements are done on several hundred cells per patient so summary measurements reflecting the underlying distribution are needed.^ Distributional characteristics of 34 NM variables from prostate cancer cells were investigated using graphical and analytical techniques. Cells per sample ranged from 52 to 458. A small sample of patients with benign prostatic hyperplasia (BPH), representing non-cancer cells, was used for general comparison with the cancer cells.^ Data transformations such as log, square root and 1/x did not yield normality as measured by the Shapiro-Wilks test for normality. A modulus transformation, used for distributions having abnormal kurtosis values, also did not produce normality.^ Kernel density histograms of the 34 variables exhibited non-normality and 18 variables also exhibited bimodality. A bimodality coefficient was calculated and 3 variables: DNA concentration, shape and elongation, showed the strongest evidence of bimodality and were studied further.^ Two analytical approaches were used to obtain a summary measure for each variable for each patient: cluster analysis to determine significant clusters and a mixture model analysis using a two component model having a Gaussian distribution with equal variances. The mixture component parameters were used to bootstrap the log likelihood ratio to determine the significant number of components, 1 or 2. These summary measures were used as predictors of disease severity in several proportional odds logistic regression models. The disease severity scale had 5 levels and was constructed of 3 components: extracapsulary penetration (ECP), lymph node involvement (LN+) and seminal vesicle involvement (SV+) which represent surrogate measures of prognosis. The summary measures were not strong predictors of disease severity. There was some indication from the mixture model results that there were changes in mean levels and proportions of the components in the lower severity levels. ^
Resumo:
Uveal melanoma is a rare but life-threatening form of ocular cancer. Contemporary treatment techniques include proton therapy, which enables conservation of the eye and its useful vision. Dose to the proximal structures is widely believed to play a role in treatment side effects, therefore, reliable dose estimates are required for properly evaluating the therapeutic value and complication risk of treatment plans. Unfortunately, current simplistic dose calculation algorithms can result in errors of up to 30% in the proximal region. In addition, they lack predictive methods for absolute dose per monitor unit (D/MU) values. ^ To facilitate more accurate dose predictions, a Monte Carlo model of an ocular proton nozzle was created and benchmarked against measured dose profiles to within ±3% or ±0.5 mm and D/MU values to within ±3%. The benchmarked Monte Carlo model was used to develop and validate a new broad beam dose algorithm that included the influence of edgescattered protons on the cross-field intensity profile, the effect of energy straggling in the distal portion of poly-energetic beams, and the proton fluence loss as a function of residual range. Generally, the analytical algorithm predicted relative dose distributions that were within ±3% or ±0.5 mm and absolute D/MU values that were within ±3% of Monte Carlo calculations. Slightly larger dose differences were observed at depths less than 7 mm, an effect attributed to the dose contributions of edge-scattered protons. Additional comparisons of Monte Carlo and broad beam dose predictions were made in a detailed eye model developed in this work, with generally similar findings. ^ Monte Carlo was shown to be an excellent predictor of the measured dose profiles and D/MU values and a valuable tool for developing and validating a broad beam dose algorithm for ocular proton therapy. The more detailed physics modeling by the Monte Carlo and broad beam dose algorithms represent an improvement in the accuracy of relative dose predictions over current techniques, and they provide absolute dose predictions. It is anticipated these improvements can be used to develop treatment strategies that reduce the incidence or severity of treatment complications by sparing normal tissue. ^
Novel Imaging-Based Techniques Reveal a Role for PD-1/PD-L1 in Tumor Immune Surveillance in the Lung
Resumo:
The binding of immune inhibitory receptor Programmed Death 1 (PD-1) on T cells to its ligand PD-L1 has been implicated as a major contributor to tumor induced immune suppression. Clinical trials of PD-L1 blockade have proven effective in unleashing therapeutic anti-tumor immune responses in a subset of patients with advanced melanoma, yet current response rates are low for reasons that remain unclear. Hypothesizing that the PD-1/PD-L1 pathway regulates T cell surveillance within the tumor microenvironment, we employed intravital microscopy to investigate the in vivo impact of PD-L1 blocking antibody upon tumor-associated immune cell migration. However, current analytical methods of intravital dynamic microscopy data lack the ability to identify cellular targets of T cell interactions in vivo, a crucial means for discovering which interactions are modulated by therapeutic intervention. By developing novel imaging techniques that allowed us to better analyze tumor progression and T cell dynamics in the microenvironment; we were able to explore the impact of PD-L1 blockade upon the migratory properties of tumor-associated immune cells, including T cells and antigen presenting cells, in lung tumor progression. Our results demonstrate that early changes in tumor morphology may be indicative of responsiveness to anti-PD-L1 therapy. We show that immune cells in the tumor microenvironment as well as tumors themselves express PD-L1, but immune phenotype alone is not a predictive marker of effective anti-tumor responses. Through a novel method in which we quantify T cell interactions, we show that T cells are largely engaged in interactions with dendritic cells in the tumor microenvironment. Additionally, we show that during PD-L1 blockade, non-activated T cells are recruited in greater numbers into the tumor microenvironment and engage more preferentially with dendritic cells. We further show that during PD-L1 blockade, activated T cells engage in more confined, immune synapse-like interactions with dendritic cells, as opposed to more dynamic, kinapse-like interactions with dendritic cells when PD-L1 is free to bind its receptor. By advancing the contextual analysis of anti-tumor immune surveillance in vivo, this study implicates the interaction between T cells and tumor-associated dendritic cells as a possible modulator in targeting PD-L1 for anti-tumor immunotherapy.