2 resultados para Hydropower system control

em DigitalCommons@The Texas Medical Center


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Heat shock protein 70 (Hsp70) plays a central role in protein homeostasis and quality control in conjunction with other chaperone machines, including Hsp90. The Hsp110 chaperone Sse1 promotes Hsp90 activity in yeast, and functions as a nucleotide exchange factor (NEF) for cytosolic Hsp70, but the precise roles Sse1 plays in client maturation through the Hsp70-Hsp90 chaperone system are not fully understood. We find that upon pharmacological inhibition of Hsp90, a model protein kinase, Ste11DeltaN, is rapidly degraded, whereas heterologously expressed glucocorticoid receptor (GR) remains stable. Hsp70 binding and nucleotide exchange by Sse1 was required for GR maturation and signaling through endogenous Ste11, as well as to promote Ste11DeltaN degradation. Overexpression of another functional NEF partially compensated for loss of Sse1, whereas the paralog Sse2 fully restored GR maturation and Ste11DeltaN degradation. Sse1 was required for ubiquitinylation of Ste11DeltaN upon Hsp90 inhibition, providing a mechanistic explanation for its role in substrate degradation. Sse1/2 copurified with Hsp70 and other proteins comprising the "early-stage" Hsp90 complex, and was absent from "late-stage" Hsp90 complexes characterized by the presence of Sba1/p23. These findings support a model in which Hsp110 chaperones contribute significantly to the decision made by Hsp70 to fold or degrade a client protein.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective. Essential hypertension affects 25% of the US adult population and is a leading contributor to morbidity and mortality. Because BP is a multifactorial phenotype that resists simple genetic analysis, intermediate phenotypes within the complex network of BP regulatory systems may be more accessible to genetic dissection. The Renin-Angiotensin System (RAS) is known to influence intermediate and long-term blood pressure regulation through alterations in vascular tone and renal sodium and fluid resorption. This dissertation examines associations between renin (REN), angiotensinogen (AGT), angiotensin-converting enzyme (ACE) and angiotensin II type 1 receptor (AT1) gene variation and interindividual differences in plasma hormone levels, renal hemodynamics, and BP homeostasis.^ Methods. A total of 150 unrelated men and 150 unrelated women, between 20.0 and 49.9 years of age and free of acute or chronic illness except for a history of hypertension (11 men and 7 women, all off medications), were studied after one week on a controlled sodium diet. RAS plasma hormone levels, renal hemodynamics and BP were determined prior to and during angiotensin II (Ang II) infusion. Individuals were genotyped by PCR for a variable number tandem repeat (VNTR) polymorphism in REN, and for the following restriction fragment length polymorphisms (RFLP): AGT M235T, ACE I/D, and AT1 A1166C. Associations between clinical measurements and allelic variation were examined using multiple linear regression statistical models.^ Results. Women homozygous for the AT1 1166C allele demonstrated higher intracellular levels of sodium (p = 0.044). Men homozygous for the AGT T235 allele demonstrated a blunted decrement in renal plasma flow in response to Ang II infusion (p = 0.0002). There were no significant associations between RAS gene variation and interindividual variation in RAS plasma hormone levels or BP.^ Conclusions. Rather than identifying new BP controlling genes or alleles, the study paradigm employed in this thesis (i.e., measured genes, controlled environments and interventions) may provide mechanistic insight into how candidate genes affect BP homeostasis. ^