5 resultados para Hydrogen,laminar burning velocity,energy production,combustion,cellularity

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiolipin (CL) is responsible for modulation of activities of various enzymes involved in oxidative phosphorylation. Although energy production decreases in heart failure (HF), regulation of cardiolipin during HF development is unknown. Enzymes involved in cardiac cardiolipin synthesis and remodeling were studied in spontaneously hypertensive HF (SHHF) rats, explanted hearts from human HF patients, and nonfailing Sprague Dawley (SD) rats. The biosynthetic enzymes cytidinediphosphatediacylglycerol synthetase (CDS), phosphatidylglycerolphosphate synthase (PGPS) and cardiolipin synthase (CLS) were investigated. Mitochondrial CDS activity and CDS-1 mRNA increased in HF whereas CDS-2 mRNA in SHHF and humans, not in SD rats, decreased. PGPS activity, but not mRNA, increased in SHHF. CLS activity and mRNA decreased in SHHF, but mRNA was not significantly altered in humans. Cardiolipin remodeling enzymes, monolysocardiolipin acyltransferase (MLCL AT) and tafazzin, showed variable changes during HF. MLCL AT activity increased in SHHF. Tafazzin mRNA decreased in SHHF and human HF, but not in SD rats. The gene expression of acyl-CoA: lysocardiolipin acyltransferase-1, an endoplasmic reticulum MLCL AT, remained unaltered in SHHF rats. The results provide mechanisms whereby both cardiolipin biosynthesis and remodeling are altered during HF. Increases in CDS-1, PGPS, and MLCL AT suggest compensatory mechanisms during the development of HF. Human and SD data imply that similar trends may occur in human HF, but not during nonpathological aging, consistent with previous cardiolipin studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been demonstrated previously that the mammalian heart cannot sustain physiologic levels of pressure-volume work if ketone bodies are the only substrates for respiration. In order to determine the metabolic derangement responsible for contractile failure in hearts utilizing ketone bodies, rat hearts were prefused at a near-physiologic workload in a working heart apparatus with acetoacetate and competing or alternate substrates including glucose, lactate, pyruvate, propionate, leucine, isoleucine, valine and acetate. While the pressure-volume work for hearts utilizing glucose was stable for 60 minutes of perfusion, performance fell by 30 minutes for hearts oxidizing acetoacetate as the sole substrate. The tissue content of 2-oxoglutarate and its transamination product, glutamate, were elevated in hearts utilizing acetoacetate while succinyl-CoA was decreased suggesting impaired flux through the citric acid cycle at the level of 2-oxoglutarate dehydrogenase. Further studies indicated that the inhibition of 2-oxoglutarate dehydrogenase developed prior to the onset of contractile failure and that the inhibition of the enzyme may be related to sequestration of the required cofactor, coenzyme A, as the thioesters acetoacetyl-CoA and acetyl-CoA. The contractile failure was not observed when glucose, lactate, pyruvate, propionate, valine or isoleucine were present together with acetoacetate, but the addition of acetate or leucine to acetoacetate did not improve performance indicating that improved performance is not mediated through the provision of additional acetyl-CoA. Furthermore, addition of competing substrates that improved function did not relieve the inhibition of 2-oxoglutarate dehydrogenase and actually resulted in the further accumulation of citric acid cycle intermediates "upstream" of 2-oxoglutarate dehydrogenase (2-oxoglutarate, glutamate, citrate and malate). Studies with (1-$\sp{14}$C) pyruvate indicate that the utilization of ketone bodies is associated with activation of NADP$\sp+$dependent malic enzyme and enrichment of the C4 pool of the citric acid cycle. The results suggest that contractile failure induced by ketone bodies in rat heart results from inhibition of 2-oxoglutarate dehydrogenase and that reversal of contractile failure is dissociated from relief of the inhibition, but rather is due to the entry of carbon units into the citric acid cycle as compounds other than acetyl-CoA. This mechanism of enrichment (anaplerosis) provides oxaloacetate for condensation with acetyl-CoA derived from ketone bodies allowing continued energy production by sustaining flux through a span of the citric acid cycle up to the point of inhibition at 2-oxoglutarate dehydrogenase for energy production thereby producing the reducing equivalents necessary to sustain oxidative phosphorylation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor with poor prognosis due in part to drug resistance and high incidence of tumor recurrence. The drug resistant and cancer recurrence phenotype may be ascribed to the presence of glioblastoma stem cells (GSCs), which seem to reside in special stem-cell niches in vivo and require special culture conditions including certain growth factors and serum-free medium to maintain their stemness in vitro. Exposure of GSCs to fetal bovine serum (FBS) can cause their differentiation, the underlying mechanism of which remains unknown. Reactive oxygen species (ROS) play an important role in normal stem cell differentiation, but their role in affecting cancer stem cell fate remains unclear. Whether the metabolic characteristics of GSCs are different from other glioblastoma cells and can be targeted are also unknown. In this study, we used several stem-like glioblastoma cell lines derived from clinical tissues by typical neurosphere culture system or orthotopic xenografts, and showed that addition of fetal bovine serum to the medium induced an increase of ROS, leading to aberrant differentiation and decreases of stem cell markers such as CD133. We found that exposure of GSCs to serum induced their differentiation through activation of mitochondrial respiration, leading to an increase in superoxide (O2-) generation and a profound ROS stress response manifested by upregulation of oxidative stress response pathway. This increase in mitochondrial ROS led to a down-regulation of molecules including SOX2, and Olig2, and Notch1 that are important for stem cell function and an upregulation of mitochondrial superoxide dismutase SOD2 that converts O2- to H2O2. Neutralization of ROS by antioxidant N-acetyl-cysteine in the serum-treated GSCs suppressed the increase of superoxide and partially rescued the expression of SOX2, Olig2, and Notch1, and prevented the serum-induced differentiation phenotype. Additionally, GSCs showed high dependence on glycolysis for energy production. The combination of a glycolytic inhibitor 3-BrOP and a chemotherapeutic agent BCNU depleted cellular ATP and inhibited the repair of BCNU-induced DNA damage, achieving strikingly synergistic killing effects in drug resistant GSCs. This study uncovers the metabolic properties of glioblastoma stem cells and suggests that mitochondrial function and cellular redox status may profoundly affect the fates of glioblastoma stem cells via a ROS-mediated mechanism, and that the active glycolytic metabolism in cancer stem cells may provide a biochemical basis for developing novel therapeutic strategies to effectively eliminate GSCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Each year, 150 million people sustain a Traumatic Brain Injury (TBI). TBI results in life-long cognitive impairments for many survivors. One observed pathological alteration following TBI are changes in glucose metabolism. Altered glucose uptake occurs in the periphery as well as in the nervous system, with an acute increase in glucose uptake, followed by a prolonged metabolic suppression. Chronic, persistent suppression of brain glucose uptake occurs in TBI patients experiencing memory loss. Abberant post-injury activation of energy-sensing signaling cascades could result in perturbed cellular metabolism. AMP-activated kinase (AMPK) is a kinase that senses low ATP levels, and promotes efficient cell energy usage. AMPK promotes energy production through increasing glucose uptake via glucose transporter 4 (GLUT4). When AMPK is activated, it phosphorylates Akt Substrate of 160 kDa (AS160), a Rab GTPase activating protein that controls Glut4 translocation. Additionally, AMPK negatively regulates energy-consumption by inhibiting protein synthesis via the mechanistic Target of Rapamycin (mTOR) pathway. Given that metabolic suppression has been observed post-injury, we hypothesized that activity of the AMPK pathway is transiently decreased. As AMPK activation increases energy efficiency of the cell, we proposed that increasing AMPK activity to combat the post-injury energy crisis would improve cognitive outcome. Additionally, we expected that inhibiting AMPK targets would be detrimental. We first investigated the role of an existing state of hyperglycemia on TBI outcome, as hyperglycemia correlates with increased mortality and decreased cognitive outcome in clinical studies. Inducing hyperglycemia had no effect on outcome; however, we discovered that AMPK and AS160 phosphorylation were altered post-injury. We conducted vii work to characterize this period of AMPK suppression and found that AMPK phosphorylation was significantly decreased in the hippocampus and cortex between 24 hours and 3 days post-injury, and phosphorylation of its downstream targets was consistently altered. Based on this period of observed decreased AMPK activity, we administered an AMPK activator post-injury, and this improved cognitive outcome. Finally, to examine whether AMPK-regulated target Glut4 is involved in post-injury glucose metabolism, we applied an inhibitor and found this treatment impaired post-injury cognitive function. This work is significant, as AMPK activation may represent a new TBI therapeutic target.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light absorption is an important process for energy production and sensory perception in many organisms. In the filamentous fungus, Neurospora crassa, blue-light is an important regulator of both asexual and sexual development, but the identity of the blue-light receptor is unknown. The work presented in this dissertation initiated the characterization of the putative N. crassa opsin photoreceptor, NOP-1. Opsins were thought to exist only in the archaea and mammals until the discovery of nop-1. All opsins have the same conserved structure of seven transmembrane helical domains with a lysine residue in the seventh helix specific for forming a Schiff-base linkage with retinal. The predicted NOP-1 protein sequence is equally similar to archaeal rhodopsins and a newly identified fungal opsin-related protein group (ORPs). ORPs maintain the seven transmembrane helical structure of opsins, but lack the conserved lysine residue for binding retinal. An ORP gene, orp-1 was identified in N. crassa and this work includes the cloning and sequence analysis of this gene. Characterization of NOP-1 function in N. crassa development began with the construction of a Δnop-1 deletion mutant. Extensive phenotypic analysis of Δnop-1 mutants revealed only subtle defects during development primarily under environmental conditions that induce a stress response. NOP-1 was overexpressed in the heterologous system Pichia pastoris, and it was demonstrated that NOP-1 protein bound all-trans retinal to form a green-light absorbing pigment (λmax = 534 nm) with a photochemical reaction cycle similar to archaeal sensory rhodopsins. nop-1 gene expression was monitored during N. crassa development. nop-1 transcript is highly expressed during asexual sporulation (conidiation) and transcript levels are abundant in the later stages of conidial development. nop-1 expression is not regulated by blue-light or elevated temperatures. Potential functions for NOP-1 were discovered through the transcriptional analysis of conidiation-associated genes in Δnop-1 mutants. NOP-1 exhibits antagonistic transcriptional regulation of conidiation-associated genes late in conidial development, by enhancing the carotenogenic gene, al-2 and repressing the conidiation-specific genes, con-10 and con-13. ^