4 resultados para Human-specific Adenoviruses

em DigitalCommons@The Texas Medical Center


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this project was to determine if stability of specific antibody secretion improved after fusion of Epstein-Barr virus (EBV)-transformed lymphoblastoid cells with P3X63Ag8.653 murine myeloma cells. Production of human monoclonal antibodies by Epstein-Barr virus transformation and somatic cell fusion has been used by many laboratories, however the steps involved have not been fully optimized. B lymphocytes isolated from the peripheral blood of normal donors were enriched for Thomsen-Friedenreich (T) antigen-reactive cells by panning on asialoglycophorin. The EBV-transformed lymphoblastoid cell lines generated from asialoglycophorin-adherent B lymphocytes were treated in three different manners: (1) cloned and maintained in culture as monoclonal lymphoblastoid cell lines, (2) cloned and fused with murine myeloma cells or (3) fused shortly after transfomation without prior cloning. Cloned lymphoblastoid cell lines maintained in culture without fusion either died or lost specific antibody secretion within five months. Uncloned lymphoblastoid cells remained viable for up to three months but lost specific antibody secretion within two months probably due to overgrowth by nonspecific clones. In an attempt to increase longevity and to stabilize specific antibody secretion by these cells, the cloned lymphoblastoid cells were fused with murine myeloma cells. In nine of ten fusions no hybrids were recovered. As an alternate approach, uncloned lymphoblastoid cells secreting T antigen-specific antibody were hybridized with murine myeloma cells, hybrids secreting T antigen-specific antibody were recovered in six of seven fusions. Furthermore, T antigen-specific antibodies of high titer were secreted by the heterohybridoma clones for more than five months of continuous culture. These heterohybridoma cells secreted more immunoglobulin, produced greater titers of antibody and maintained specific antibody secretion longer than either monoclonal or polyclonal EBV-transformed lymphoblastoid cells. These studies have conclusively demonstrated that fusion of polyclonal lymphoblastoid cells secreting T antigen-specific antibody with murine myeloma cells results in prolongation of human monoclonal antibody production compared with unfused monoclonal or polyclonal lymphoblastoid cell lines. This procedure should be generally applicable for the production of stable human monoclonal antibody-secreting cells lines from peripheral blood lymphocytes. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Human placental lactogen (hPL) is a 22,000 dalton protein hormone produced in the placenta. The physiological actions of hPL are not well understood but its major activity is to regulate both maternal and fetal metabolism. hPL stimulates maternal lipolysis increasing free fatty acids in the maternal blood, allowing their use as an energy source by the mother, and sparing glucose for the fetus. It may also act as a growth promoting hormone for the fetus. hPL is produced in increasing amounts as pregnancy progresses. At term, hPL accounts for 10% of protein and 5% of total RNA in the placenta. This high level of hPL production is tissue-specific, as hPL is only produced in the placenta by syncytiotrophoblast cells.^ The objective of this work was to understand the mechanism by which such high levels of hPL are produced in a tissue-specific manner. A transcriptional enhancer found 2.2 kb 3$\sp\prime$ to one of the hPL genes (hPL$\sb3$) may explain the regulation of hPL expression. Transient transfection experiments using the hPL-producing human choriocarcinoma cell line JEG-3 localized the hPL enhancer to a 138 bp core element. This 138 bp sequence was found to be tissue specific in its actions as it did not promote transcription in heterologous cell lines. Gel mobility shift assays showed the hPL enhancer interacts specifically with nuclear proteins unique to hPL-producing cells. Within the 138 bp enhancer a 22 bp region was shown to be protected from DNase I digestion due to binding of proteins derived from placental nuclear extracts. Proteins binding this region of the enhancer may be instrumental in the tissue specific activity of the hPL enhancer. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

9-β-D-arabinosylguanine (ara-G), an analogue of deoxyguanosine, has demonstrated T-lymphoblast selective anti-leukemia activity both in vitro and in vivo in cell lines and primary cells and in phase I investigations. The present work was initiated to identify factors that result in this selectivity. ^ The cytotoxicity of ara-G is manifest only after its phosphorylation. Experiments using cell lines transfected to overexpress specific nucleoside kinases demonstrated that the phosphorylation of ara-G to its monophosphate is by both cytoplasmic deoxycytidine kinase and mitochondria) deoxyguanosine kinase. Ara-G monophosphate is converted to its 5′-triphosphate (ara-GTP) in cells by these kinases and then incorporated into DNA. Mechanistic studies demonstrated that incorporation of ara-GTP into DNA was a necessary event for the induction of cell death. ^ Pharmacokinetic and pharmacodynamic studies utilizing three human acute leukemia cell lines, CEM (T-lymphoblastic), Raji (B-lymphoblastic), and ML-1 (myeloid) were performed. CEM cells were most sensitive to ara-G-induced inhibition of colony formation, accumulated ara-GTP at a faster rate and to a greater degree than either Raji or ML-1, but incorporated the lowest number of ara-G molecules into DNA. The position of incorporation was internal and similar in all cell lines. The terminal elimination phase of ara-GTP was >24 h and similar in these cells. Comparisons between inhibition of colony formation and ara-GTP incorporation into DNA demonstrated that while within a cell line there was correlation among these parameters, between cell lines there was no relationship between number of incorporated ara-G molecules and ara-G(TP)-mediated toxicity suggesting that there were additional factors. ^ The expression of membrane bound Fas and Fast was unchanged in all cell lines. In contrast, there was a 2-fold increase in soluble Fast, which was found exclusively in CEM cells. Ara-G-mediated apoptosis in CEM occurred from all phases of the cell cycle and was abrogated partially by Fas antagonist antibodies. These data suggest that Fas-mediated cell death due to the liberation of sFasL may be responsible for the hypersensitivity to ara-G manifested by immature T-cells such as CEM. The role of Fas in ara-G induced death of acute T-lymphoblastic leukemia cells during therapy needs to be tested. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A growing number of studies show strong associations between stress and altered immune function. In vivo studies of chronic and acute stress have demonstrated that cognitive stressors are strongly correlated with high circulating levels of catecholamines (CT) and corticosteroids (CS) that are associated with changes in type-1/type-2 cytokine expression. Although individual pharmacologic doses of CS and CT can inhibit the expression of T-helper 1 (Th1, type-1 like) and promote the production of T-helper 2 (Th2, type-2 like) cytokines in antigen-specific and mitogen stimulated human leukocyte cultures in vitro, little attention has been focused on the effects of combination physiologic-stress doses of CT and CS that may be more physiologically relevant. In addition, both in-vivo and in-vitro studies suggest that the differential expression of the B7 family of costimulatory molecules CD80 and CD86 may promote the expression of type-1 or type-2 cytokines, respectively. Furthermore, corticosteroids can influence the expression of β2-adrenergic receptors in various human tissues. We therefore investigated the combined effects of physiologic-stress doses of in vitro CT and CS upon the type-1/type-2 cytokine balance and expression of B7 costimulatory molecules of human peripheral blood mononuclear cells (PBMC) as a model to study the immunomodulatory effects of physiologic stress. Results demonstrated a significant decrease in type-1 cytokine expression and a significant increase in type-2 cytokine production in our CS+CT incubated cultures when compared to either CT or CS agents alone. In addition, we demonstrated the differential expression of CD80/CD86 in favor of CD86 at the cellular and population level as determined by flow cytometry in lipopolysaccharide stimulated human Monocytes. Furthermore, we developed flow cytometry based assays to detect total β2AR in human CD4+ T-lymphocytes that demonstrated decreased expression of β2AR in mitogen stimulated CD4+ T-lymphocytes in the presence of physiologic stress levels of CS and CT as single in vitro agents, however, when both CS and CT were combined, significantly higher expression of β2AR was observed. In summary, our in vitro data suggest that both CS and CT work cooperatively to shift immunity towards type-2 responses. ^