7 resultados para Honeycomb and Sandwich Cantilever Beam

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The usage of intensity modulated radiotherapy (IMRT) treatments necessitates a significant amount of patient-specific quality assurance (QA). This research has investigated the precision and accuracy of Kodak EDR2 film measurements for IMRT verifications, the use of comparisons between 2D dose calculations and measurements to improve treatment plan beam models, and the dosimetric impact of delivery errors. New measurement techniques and software were developed and used clinically at M. D. Anderson Cancer Center. The software implemented two new dose comparison parameters, the 2D normalized agreement test (NAT) and the scalar NAT index. A single-film calibration technique using multileaf collimator (MLC) delivery was developed. EDR2 film's optical density response was found to be sensitive to several factors: radiation time, length of time between exposure and processing, and phantom material. Precision of EDR2 film measurements was found to be better than 1%. For IMRT verification, EDR2 film measurements agreed with ion chamber results to 2%/2mm accuracy for single-beam fluence map verifications and to 5%/2mm for transverse plane measurements of complete plan dose distributions. The same system was used to quantitatively optimize the radiation field offset and MLC transmission beam modeling parameters for Varian MLCs. While scalar dose comparison metrics can work well for optimization purposes, the influence of external parameters on the dose discrepancies must be minimized. The ability of 2D verifications to detect delivery errors was tested with simulated data. The dosimetric characteristics of delivery errors were compared to patient-specific clinical IMRT verifications. For the clinical verifications, the NAT index and percent of pixels failing the gamma index were exponentially distributed and dependent upon the measurement phantom but not the treatment site. Delivery errors affecting all beams in the treatment plan were flagged by the NAT index, although delivery errors impacting only one beam could not be differentiated from routine clinical verification discrepancies. Clinical use of this system will flag outliers, allow physicists to examine their causes, and perhaps improve the level of agreement between radiation dose distribution measurements and calculations. The principles used to design and evaluate this system are extensible to future multidimensional dose measurements and comparisons. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The clinical advantage for protons over conventional high-energy x-rays stems from their unique depth-dose distribution, which delivers essentially no dose beyond the end of range. In order to achieve it, accurate localization of the tumor volume relative to the proton beam is necessary. For cases where the tumor moves with respiration, the resultant dose distribution is sensitive to such motion. One way to reduce uncertainty caused by respiratory motion is to use gated beam delivery. The main goal of this dissertation is to evaluate the respiratory gating technique in both passive scattering and scanning delivery mode. Our hypothesis for the study was that optimization of the parameters of synchrotron operation and respiratory gating can lead to greater efficiency and accuracy of respiratory gating for all modes of synchrotron-based proton treatment delivery. The hypothesis is tested in two specific aims. The specific aim #1 is to assess the efficiency of respiratory-gated proton beam delivery and optimize the synchrotron operations for the gated proton therapy. A simulation study was performed and introduced an efficient synchrotron operation pattern, called variable Tcyc. In addition, the simulation study estimated the efficiency in the respiratory gated scanning beam delivery mode as well. The specific aim #2 is to assess the accuracy of beam delivery in respiratory-gated proton therapy. The simulation study was extended to the passive scattering mode to estimate the quality of pulsed beam delivery to the residual motion for several synchrotron operation patterns with the gating technique. The results showed that variable Tcyc operation can offer good reproducible beam delivery to the residual motion at a certain phase of the motion. For respiratory gated scanning beam delivery, the impact of motion on the dose distributions by scanned beams was investigated by measurement. The results showed the threshold for motion for a variety of scan patterns and the proper number of paintings for normal and respiratory gated beam deliveries. The results of specific aims 1 and 2 provided supporting data for implementation of the respiratory gating beam delivery technique into both passive and scanning modes and the validation of the hypothesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Species variations in formaldehyde solutions and gases were investigated by means of infrared spectral analysis. Double beam infrared spectrometry in conjunction with sodium chloride wafer technique and solvent compensation technique were employed. Formaldehyde species in various solutions were investigated. Formalin 37% was stable for many months. Refrigeration had no effects on its stability. Spectral changes were detected in 1000 ppm formaldehyde solutions. The absorbances of very diluted solutions up to 100 ppm were lower than the detection limit of the instruments. Solvent compensation improved resolution, but was associated with an observed lack of repeatability. Formaldehyde species in animal chambers containing animals and in mobile home air were analyzed with the infrared spectrophotometer equipped with a 10 cm gas cell. Spectra were not different from the spectrum of clean air. A portable single beam infrared spectrometer with a 20 meter pathlength was used for reinvestigation. Indoor formaldehyde could not be detected in the spectral; conversely, an absorption peak at 3.58 microns was found in the spectra of 3 and 15 ppm formaldehyde gas in animal chambers. This peak did not appear in the spectrum of the control chamber. Because of concerns over measurement bias among various analytical methods for formaldehyde, side-by-side comparisons were conducted in both laboratory and field measurements. The chromotropic acid method with water and 1% sodium bisulfite as collection media, the pararosaniline method, and a single beam infrared spectrometer were compared. Measurement bias was elucidated and the extent of the effects of temperature and humidity was also determined. The problems associated with related methods were discussed. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The influence of respiratory motion on patient anatomy poses a challenge to accurate radiation therapy, especially in lung cancer treatment. Modern radiation therapy planning uses models of tumor respiratory motion to account for target motion in targeting. The tumor motion model can be verified on a per-treatment session basis with four-dimensional cone-beam computed tomography (4D-CBCT), which acquires an image set of the dynamic target throughout the respiratory cycle during the therapy session. 4D-CBCT is undersampled if the scan time is too short. However, short scan time is desirable in clinical practice to reduce patient setup time. This dissertation presents the design and optimization of 4D-CBCT to reduce the impact of undersampling artifacts with short scan times. This work measures the impact of undersampling artifacts on the accuracy of target motion measurement under different sampling conditions and for various object sizes and motions. The results provide a minimum scan time such that the target tracking error is less than a specified tolerance. This work also presents new image reconstruction algorithms for reducing undersampling artifacts in undersampled datasets by taking advantage of the assumption that the relevant motion of interest is contained within a volume-of-interest (VOI). It is shown that the VOI-based reconstruction provides more accurate image intensity than standard reconstruction. The VOI-based reconstruction produced 43% fewer least-squares error inside the VOI and 84% fewer error throughout the image in a study designed to simulate target motion. The VOI-based reconstruction approach can reduce acquisition time and improve image quality in 4D-CBCT.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Proton therapy is growing increasingly popular due to its superior dose characteristics compared to conventional photon therapy. Protons travel a finite range in the patient body and stop, thereby delivering no dose beyond their range. However, because the range of a proton beam is heavily dependent on the tissue density along its beam path, uncertainties in patient setup position and inherent range calculation can degrade thedose distribution significantly. Despite these challenges that are unique to proton therapy, current management of the uncertainties during treatment planning of proton therapy has been similar to that of conventional photon therapy. The goal of this dissertation research was to develop a treatment planning method and a planevaluation method that address proton-specific issues regarding setup and range uncertainties. Treatment plan designing method adapted to proton therapy: Currently, for proton therapy using a scanning beam delivery system, setup uncertainties are largely accounted for by geometrically expanding a clinical target volume (CTV) to a planning target volume (PTV). However, a PTV alone cannot adequately account for range uncertainties coupled to misaligned patient anatomy in the beam path since it does not account for the change in tissue density. In order to remedy this problem, we proposed a beam-specific PTV (bsPTV) that accounts for the change in tissue density along the beam path due to the uncertainties. Our proposed method was successfully implemented, and its superiority over the conventional PTV was shown through a controlled experiment.. Furthermore, we have shown that the bsPTV concept can be incorporated into beam angle optimization for better target coverage and normal tissue sparing for a selected lung cancer patient. Treatment plan evaluation method adapted to proton therapy: The dose-volume histogram of the clinical target volume (CTV) or any other volumes of interest at the time of planning does not represent the most probable dosimetric outcome of a given plan as it does not include the uncertainties mentioned earlier. Currently, the PTV is used as a surrogate of the CTV’s worst case scenario for target dose estimation. However, because proton dose distributions are subject to change under these uncertainties, the validity of the PTV analysis method is questionable. In order to remedy this problem, we proposed the use of statistical parameters to quantify uncertainties on both the dose-volume histogram and dose distribution directly. The robust plan analysis tool was successfully implemented to compute both the expectation value and its standard deviation of dosimetric parameters of a treatment plan under the uncertainties. For 15 lung cancer patients, the proposed method was used to quantify the dosimetric difference between the nominal situation and its expected value under the uncertainties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

DEVELOPMENT AND IMPLEMENTATION OF A DYNAMIC HETEROGENEOUS PROTON EQUIVALENT ANTHROPOMORPHIC THORAX PHANTOM FOR THE ASSESSMENT OF SCANNED PROTON BEAM THERAPY by James Leroy Neihart, B.S. APPROVED: ______________________________David Followill, Ph.D. ______________________________Peter Balter, Ph.D. ______________________________Narayan Sahoo, Ph.D. ______________________________Kenneth Hess, Ph.D. ______________________________Paige Summers, M.S. APPROVED: ____________________________ Dean, The University of Texas Graduate School of Biomedical Sciences at Houston DEVELOPMENT AND IMPLEMENTATION OF A DYNAMIC HETEROGENEOUS PROTON EQUIVALENT ANTHROPOMORPHIC THORAX PHANTOM FOR THE ASSESSMENT OF SCANNED PROTON BEAM THERAPY A THESIS Presented to the Faculty of The University of Texas Health Science Center at Houston andThe University of TexasMD Anderson Cancer CenterGraduate School of Biomedical Sciences in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE by James Leroy Neihart, B.S. Houston, Texas Date of Graduation August, 2013 Acknowledgments I would like to acknowledge my advisory committee members, chair David Followill, Ph.D., Peter Balter, Ph.D, Narayan Sahoo, Ph.D., Kenneth Hess, Ph.D., Paige Summers M.S. and, for their time and effort contributed to this project. I would additionally like to thank the faculty and staff at the PTC-H and the RPC who assisted in many aspects of this project. Falk Pӧnisch, Ph.D. for his breath hold proton therapy treatment expertise, Matt Palmer and Jaques Bluett for proton dosimetry assistance, Matt Kerr for verification plan assistance, Carrie Amador, Nadia Hernandez, Trang Nguyen, Andrea Molineu, Lynda McDonald for TLD and film dosimetry assistance. Finally, I would like to thank my wife and family for their support and encouragement during my research and studies. Development and implementation of a dynamic heterogeneous proton equivalent anthropomorphic thorax phantom for the assessment of scanned proton beam therapy By: James Leroy Neihart, B.S. Chair of Advisory Committee: David Followill, Ph.D Proton therapy has been gaining ground recently in radiation oncology. To date, the most successful utilization of proton therapy is in head and neck cases as well as prostate cases. These tumor locations do not suffer from the resulting difficulties of treatment delivery as a result of respiratory motion. Lung tumors require either breath hold or motion tracking, neither of which have been assessed with an end-to-end phantom for proton treatments. Currently, the RPC does not have a dynamic thoracic phantom for proton therapy procedure assessment. Additionally, such a phantom could be an excellent means of assessing quality assurance of the procedures of proton therapy centers wishing to participate in clinical trials. An eventual goal of this phantom is to have a means of evaluating and auditing institutions for the ability to start clinical trials utilizing proton therapy procedures for lung cancers. Therefore, the hypothesis of this study is that a dynamic anthropomorphic thoracic phantom can be created to evaluate end-to-end proton therapy treatment procedures for lung cancer to assure agreement between the measured and calculated dose within 5% / 5 mm with a reproducibility of 2%. Multiple materials were assessed for thoracic heterogeneity equivalency. The phantom was designed from the materials found to be in greatest agreement. The phantom was treated in an end-to-end treatment four times, which included simulation, treatment planning and treatment delivery. Each treatment plan was delivered three times to assess reproducibility. The dose measured within the phantom was compared to that of the treatment plan. The hypothesis was fully supported for three of the treatment plans, but failed the reproducibility requirement for the most aggressive treatment plan.