6 resultados para Homing pigeons.
em DigitalCommons@The Texas Medical Center
Resumo:
Mycobacterium tuberculosis (Mtb) replicates within the human macrophages and we investigated the activating effects of retinoic acid (RA) and vitamin D3 (VD) on macrophages in relation to the viability of Mtb. A combination of these vitamins (RAVD) enhanced the receptors on THP-1 macrophage (Mannose receptor and DC-SIGN) that increased mycobacterial uptake but inhibited thesubsequent intracellular growth of Mtb by inducing reactive oxygen species (ROS) and autophagy. RAVD also enhanced antigen presenting and homing receptors in THPs that suggested an activated phenotype for THPs following RAVD treatment. RAVD mediated activation was also associated with a marked phenotypic change in Mtb infected THPs that fused with adjacent cells to formmultinucleate giant cells (MNGCs). Typically MNGCs occurred over 30 days of in vitro culture and contained non-replicating persisting Mtb for as long as 60 days in culture. We propose that the RAVD mediated inhibition of replicating Mtb leading to persistence of non-replicating Mtb within THPs may provide a novel human macrophage model simulating formation of MNGCs in humanlungs.
Resumo:
Ultraviolet (UV) radiation produces immunological alterations in both humans and animals that include a decrease in the delayed type hypersensitivity (DTH) response to complex antigens, and to the induction of the suppressor T cell pathway. Cell-mediated immunity of the type that is altered by UV radiation has been shown to be important in host resistance against microorganisms. My dissertation addresses questions concerning the effects of UV radiation on the pathogenesis of opportunistic fungal pathogens such as Candida albicans.^ The (DTH) response of C3H mice exposed to ultraviolet (UV) radiation before (afferent arm of DTH) or after (efferent arm of DTH) infection with Candida albicans was markedly and systemically suppressed. Although suppression of both the afferent and efferent phases of DTH were caused by similar wavebands within the ultraviolet region, the dose of UV radiation that suppressed the efferent arm of DTH was 10-fold higher than the dose that suppressed the afferent arm of the DTH reaction.^ The DTH response of C57BL/6 mice was also suppressed by UV radiation; however the suppression was accomplished by exposure to significantly lower doses UV radiation compared to C3H mice. In C57BL/6 mice, the dose of UV radiation that suppressed the afferent phase of DTH was 5-fold higher than the dose that suppressed the efferent phase.^ Exposure of C3H mice to UV radiation before sensitization induced splenic suppressor T cells that upon transfer to normal recipients, impaired the induction of DTH to Candida. In contrast, the suppression caused by UV irradiation of mice after sensitization was not transferable. Spleen cells from sensitized mice exhibited altered homing patterns in animals that were exposed to UV radiation shortly before receiving cells, suggesting that UV-induced suppression of the efferent arm of DTH could result from an alteration in the distribution of effector cells.^ UV radiation decreased the survival of Candida-infected mice; however, no correlation was found between suppression of the DTH response and the course of lethal infection. This suggested that DTH was not protective against lethal disease with this organism. UV radiation also changed the persistence of the organism in the internal organs. UV-irradiated, infected animals had increased numbers of Candida in their kidneys compared to non-irradiated mice. Sensitization prior to UV irradiation aided clearance of the organism from the kidneys of UV-irradiated mice.^ These data show that UV radiation suppresses cell-mediated immunity to Candida albicans in mice and increases mortality of Candida-infected mice. Moreover, the data suggest that an increase in environmental UV radiation could increase the severity of pathogenic infections. ^
Resumo:
An in vitro model using highly purified freshly isolated T cells demonstrated that immobilized ligands for the integrin $\alpha4\beta1$ could cooperate to enhance mitogen signals delivered by coimmobilized anti-CD3 specfic monoclonal antibody OKT3. Costimulation through $\alpha4\beta1$ integrin lead to enhanced proliferation which depended on expression of both IL-2 as well as IL-2 receptor. The transcription factors NF-AT, AP-1, and NF-$\kappa$B, which are involved in the regulation of IL-2 as well as other cytokine genes, were weakly induced by anti-CD3 stimulation alone in electromobility shift assays, but were augmented significantly with $\alpha4\beta1$ costimulation. These results suggested that $\alpha4\beta1$ ligands delivered a growth promoting signal which could synergize with signals induced by engagement of the TCR/CD3 complex, and also suggested a dual function for integrins in both localization and subsequent delivery of a growth promoting signal for T lymphocytes. Integrin involvement in lymphocyte trafficking has been employed as a model for understanding tumor cell metastasis. Therefore we have extended the duality of integrin function in both homing and subsequent delivery of a growth promoting signal to include a role for integrins in providing growth stimulation for tumor cells. Using a gastric derived tumor line, inhibition of adhesion to substrate leads to G0/G1 cell cycle arrest, reduced cyclin A expression, and reduced phospholipid synthesis. This effect could be reversed upon $\alpha2\beta1$ integrin mediated reattachment to collagen. These observations demonstrated a role for an integrin in the growth regulation of a tumor line. The small GTP-binding protein Rho, implicated in phospholipid synthesis, can be inactivated by the ADP-ribosylation exoenzyme C3 from C. botulinum. Addition of C3 to cell cultures inhibited the growth promoting effect due to integrin mediated adhesion. Taken together, these results are consistent with a model for cooperative interaction between integrins and Rho leading to enhanced phospholipid synthesis and mitogen signaling. This model may provide a basis for understanding the phenomena of integrin costimulation in T cell activation. ^
Resumo:
Three rhesus monkeys (Macaca mulatta) and four pigeons (Columba livia) were trained in a visual serial probe recognition (SPR) task. A list of visual stimuli (slides) was presented sequentially to the subjects. Following the list and after a delay interval, a probe stimulus was presented that could be either from the list (Same) or not from the list (Different). The monkeys readily acquired a variable list length SPR task, while pigeons showed acquisition only under constant list length condition. However, monkeys memorized the responses to the probes (absolute strategy) when overtrained with the same lists and probes, while pigeons compared the probe to the list in memory (relational strategy). Performance of the pigeon on 4-items constant list length was disrupted when blocks of trials of different list lengths were imbedded between the 4-items blocks. Serial position curves for recognition at variable probe delays showed better relative performance on the last items of the list at short delays (0-0.5 seconds) and better relative performance on the initial items of the list at long delays (6-10 seconds for the pigeons and 20-30 seconds for the monkeys and a human adolescent). The serial position curves also showed reliable primacy and recency effects at intermediate probe delays. The monkeys showed evidence of using a relational strategy in the variable probe delay task. The results are the first demonstration of relational serial probe recognition performance in an avian and suggest similar underlying dynamic recognition memory mechanisms in primates and avians. ^
Resumo:
Metastasis, the major cause of morbidity and mortality in most cancers, is a highly organized and organ-selective process. The receptor tyrosine kinase HER2 enhances tumor metastasis, however, its role in homing to metastatic organs is poorly understood. The chemokine receptor CXCR4 has recently been shown to mediate the malignant cancer cells to specific organs. Here we show that HER2 enhances the expression of CXCR4 by increasing CXCR4 protein synthesis and inhibiting its degradation. We also observed significant correlation between HER2 and CXCR4 expression in human breast tumor tissues, and an association between CXCR4 expression and a poor overall survival rate in patients with breast cancer. Furthermore, we found that CXCR4 is required for HER2-induced invasion, migration, and adhesion activities in vitro . Finally we established stable transfectants using retroviral RNA interference to inhibit CXCR4 expression and showed that the CXCR4 is required for HER2-mediated lung metastasis in vivo. These results provide a plausible mechanism for HER2-mediated breast tumor metastasis and homing to metastatic organs, and establish a functional link between the receptor tyrosine kinase HER2 and the chemokine receptor CXCR4 signaling pathways. ^ The HER2 overexpression activates PI-3K/Akt pathways and plays an important role in mediating cell survival and tumor development. Hypoxia inducible factors (HIF) are the key regulator for angiogenesis and energy metabolism, and thereby enhance tumor growth and metastasis. HIF activation occurs in the majority of human cancers, including the HER2 overexpressing cancer cells. Previous reports suggested that increased PI-3K/Akt may activate HIF pathway in various tumors, but the detail mechanism is still not completely understood. Here we found that HER2/PI-3K/Akt pathway induces HIF-1α activation, which is independent of hypoxia, but relatively weaker than hypoxic stimulation. This phenomenon was further observed in Akt knock out mouse embryonic fibroblast cells. The PI-3K/Akt pathway does not affect HIF-1α binding with its E3 ligase VHL, but enhances the binding affinity between HIF-1α and β unit. Furthermore, we found Akt phosphorylates HIF-1β at serine 271 and further regulated HIF transcriptional activity. Our findings provided one mechanism that HER2 induce HIF activation via Akt to promote angiogenesis, and this process is independent on hypoxia, which may have implications in the oncogenic activity of HER2 and PI-3K/Akt pathway. ^
Resumo:
Lipid rafts are small laterally mobile cell membrane structures that are highly enriched in lymphocyte signaling molecules. Lipid rafts can form from the assembly of specialized lipids and proteins through hydrophobic associations from saturated acyl chains. GM1 gangliosides are a common lipid raft component and have been shown to be essential in many T cell functions. Current lipid raft theory hypothesizes that certain aspects of T cell signaling can be initiated from the coalescence of these signaling-enriched lipid rafts to sites of receptor engagement. We have described how the specific aggregation of GM1 lipid rafts can cause a reorganization of cell surface molecular associations which include dynamic associations of β1 integrins with GM1 lipid rafts. These associations had pronounced effects on T cell adhesive and migratory states. We show that GM1 lipid raft aggregation can dramatically inhibit T cell migration and chemotaxis on the extracellular matrix constituent fibronectin. This inhibition of migration function was shown to be dependent on the src kinase Lck and PKC-regulated F-actin polymerization to extending pseudopods. Furthermore, GM1 lipid raft clustering could activate T cell adhesion-strengthening mechanisms. These include an increase in cellular rigidity, the creation of polymerized cortical F-actin structures, the induction of high affinity integrin states, an increase in surface area and symmetry of the contact plane, and resistance to shear flow detachment while adherent to fibronectin. This indicates that GM1 lipid raft aggregation defines a novel stimulus to regulate lymphocyte motility and cellular adhesion which could have important implications in T cell homing mechanisms. ^