6 resultados para Hiperostose cortical congênita

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Gray matter lesions are known to be common in multiple sclerosis (MS) and are suspected to play an important role in disease progression and clinical disability. A combination of magnetic resonance imaging (MRI) techniques, double-inversion recovery (DIR), and phase-sensitive inversion recovery (PSIR), has been used for detection and classification of cortical lesions. This study shows that high-resolution three-dimensional (3D) magnetization-prepared rapid acquisition with gradient echo (MPRAGE) improves the classification of cortical lesions by allowing more accurate anatomic localization of lesion morphology. METHODS: 11 patients with MS with previously identified cortical lesions were scanned using DIR, PSIR, and 3D MPRAGE. Lesions were identified on DIR and PSIR and classified as purely intracortical or mixed. MPRAGE images were then examined, and lesions were re-classified based on the new information. RESULTS: The high signal-to-noise ratio, fine anatomic detail, and clear gray-white matter tissue contrast seen in the MPRAGE images provided superior delineation of lesion borders and surrounding gray-white matter junction, improving classification accuracy. 119 lesions were identified as either intracortical or mixed on DIR/PSIR. In 89 cases, MPRAGE confirmed the classification by DIR/PSIR. In 30 cases, MPRAGE overturned the original classification. CONCLUSION: Improved classification of cortical lesions was realized by inclusion of high-spatial resolution 3D MPRAGE. This sequence provides unique detail on lesion morphology that is necessary for accurate classification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TBI produces a consistent and extensive loss of neurofilament 68 (NF68) and neurofilament 200 (NF200), key intermediate cytoskeletal proteins found in neurons including axons and dendrites, in cortical samples from injured brain. The presence of low molecular weight NF68 breakdown products (BDPs) strongly suggest that calpain proteolysis at least in part contributes to neurofilament (NF) protein loss following injury. Furthermore, one and two-dimensional gel electrophoresis analyses of NF BDPs obtained from in situ and in vitro tissue also implicated the involvement of calpain 2 mediated proteolysis of neurofilaments following TBI. Immunohistochemical examination of derangements in cytoskeletal proteins following traumatic brain injury in rats indicated that preferential dendritic rather than axonal damage occurs within three hours post-TBI. Although proteolysis of cytoskeletal proteins occurred concurrently with early morphological alterations, evidence of proteolysis preceded the full expression of evolutionary histopathological changes. Furthermore, cytoskeletal immunofluorescence alterations were not restricted to the site of impact. Confocal microscopic investigations of NF68 and NF200 immunofluorescence within injured cortical neurons revealed alterations in neurofilament assembly in the absence of NF derangements detectable at the light microscopic level ($<$15 minutes post-TBI). Collectively immunohistochemistry studies suggest that derangements to neuronal processes are biochemical and evolutionary in nature, and not due solely to mechanical shearing. Importantly, a systemically administered calpain inhibitor (calpain inhibitor 2) significantly reduced NF200, NF68, and spectrin protein loss as well as providing marked preservation of NF proteins in neuronal somata, dendrites, and axons at 24 hours post-TBI. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The macaque cortical visual system is hierarchically organized into two streams, the ventral stream for recognizing objects and the dorsal stream for analyzing spatial relationships. The ventral stream extends from striate cortex or area V1 to inferior temporal cortex (IT) through extra-striate areas V2 and V4. Between V1 and V2, the ventral stream consists of two roughly parallel sub-streams, one extending from the cytochrome oxidase (CO) rich blobs in V1 to the CO rich thin stripes in V2, the other extending from the interblobs in V1 to interstripes, in V2. The blob-dominated sub-stream is thought to analyze the surface features such as color, whereas the interblob-dominated one is thought to analyze the contour features such as shape. ^ In the current study, the organization of cortical pathways linking V2 thin stripe and interstripe compartments with area V4 was investigated using a combination of physiological and anatomical techniques. Different compartments of V2 were first characterized, in vivo, using optical recording of intrinsic cortical signals. These functionally derived maps of V2 stripe compartments were then used to guide iontophoretic injections of multiple, distinguishable, anterograde tracers into specific V2 compartments. The distribution of labeled axons was analyzed either in horizontal sections through the prelunate gyrus, or in tangentially sectioned portions of physically unfolded cortex containing the lunate sulcus, prelunate gyrus and superior temporal sulcus. When a V2 thin stripe and adjacent interstripe were injected with distinguishable tracers, a large primary and several secondary foci were observed in V4. The primary focus from the thin stripe injection was spatially segregated from the primary focus from the V2 interstripe injection, suggesting a retention of the pattern of compartmentation. ^ We examined the distribution of retrogradely labeled cells in V1 following the injections of tracers into V2 different compartments, in order to quantitate just how parallel the two sub-streams are from V1 to V2. Our results suggest that both blobs and interblobs project to thin stripes in V2, whereas only interblobs project to interstripes. This asymmetrical segregation argues against the original proposal of strict parallelism. (Abstract shortened by UMI.) ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mineralocorticoids (DOCA) are known to increase Na('+) absorption and K('+) secretion in the rabbit cortical collecting duct (CCD). However, the mechanism of regulation of the apical and basolateral cell membranes and tight junction ion conductive pathways (G('a), G('b), and G('tj), respectively) by mineralocorticoids are only partially understood. Using electrophysiological techniques and microelectrodes it was demonstrated that the apical cell membrane contained a dominant Ba('2+) sensitive K('+) conductive pathway, G(,K)('a), and an amiloride sensitive Na('+) conductive pathway, G(,Na)('a). The basolateral membrane contained a dominant Cl('-) conductive pathway, G(,Cl)('b), and a significant Ba('2+) sensitive K('+) conductive pathway, G(,K)('b). Upon elevating the mineralocorticoid levels of rabbits with intact adrenal glands it was found that V('te) was significantly increased after 1 day with a further increase after 13-16 days. These results indicated both primary and secondary effects of mineralocorticoid elevation. After 1 day of DOCA treatment, G(,Na)('a), I(,Na)('a) and I(,K)('a) increased by more than 2-fold and were maintained at high levels after 13-16 days of DOCA treatment. Secondary (chronic) effects of mineralocorticoids were evident after 4 days or more of DOCA treatment. These included a significant increase in G(,K)('a) from 4.0 to 10.2 mS.cm('-2) and a hyperpolarization of V('b) by -20 mV after 4 days of treatment. After 13-16 days of DOCA treatment V('b) remained hyperpolarized at -98.1 mV and G('tj) decreased from 5.6 to 4.2 mS.cm('-2). The hyperpolarization of V('b) was due to an increase in electrogenic Na('+) pump activity as the pump current, I(,act)('b), increased significantly from 35.7 to 195.2 (mu)A.cm('-2). Whereas net passive K('+) current across the basolateral membrane, I(,K)('b), was near zero in the control group of animals, i.e., K('+) near equilibrium, I(,K)('b) was approximately -40 (mu)A.cm('-2) in chronic DOCA treated animals. These results demonstrate that the initial effect of mineralocorticoid elevation is to increase G(,Na)('a). The ensuing depolarization of the apical membrane increases the driving force for K('+) exit into the lumen. Between 1 and 4 days of elevation, G(,K)('a) more than doubles in magnitude and at the same time the electrogenic activity of the Na('+) pump increases. This results in a hyperpolarization of V('b) which increases the driving force for K('+) uptake from the bath to the cell through a basolateral membrane conductive pathway. After 13-16 days G('tj) decreases thereby serving to maintain high electrochemical gradients across the epithelium. Therefore, the long term effects of mineralocorticoid elevation on the CCD appear to be adaptive mechanisms that serve to maintain high levels of K('+) secretion and Na('+) absorption. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well accepted that the hippocampus (HIP) is important for spatial and contextual memories, however, it is not clear if the entorhinal cortex (EC), the main input/output structure for the hippocampus, is also necessary for memory storage. Damage to the EC in humans results in memory deficits. However, animal studies report conflicting results on whether the EC is necessary for spatial and contextual memory. Memory consolidation requires gene expression and protein synthesis, mediated by signaling cascades and transcription factors. Extracellular-signal regulated kinase (ERK) cascade activity is necessary for long-term memory in several tasks, including those that test spatial and contextual memory. In this work, we explore the role of ERK-mediated plasticity in the EC on spatial and contextual memory. ^ To evaluate this role, post-training infusions of reversible pharmacological inhibitors specific for the ERK cascade that do not affect normal neuronal activity were targeted directly to the EC of awake, behaving animals. This technique provides spatial and temporal control over the inhibition of the ERK cascade without affecting performance during training or testing. Using the Morris water maze to study spatial memory, we found that ERK inhibition in the EC resulted in long-term memory deficits consistent with a loss of spatial strategy information. When animals were allowed to learn and consolidate a spatial strategy for solving the task prior to training and ERK inhibition, the deficit was alleviated. To study contextual memory, we trained animals in a cued fear-conditioning task and saw an increase in the activation of ERK in the EC 90 minutes following training. ERK inhibition in the EC over this time point, but not at an earlier time point, resulted in increased freezing to the context, but not to the tone, during a 48-hour retention test. In addition, animals froze maximally at the time the shock was given during training; similar to naïve animals receiving additional training, suggesting that ERK-mediated plasticity in the EC normally suppresses the temporal nature of the freezing response. These findings demonstrate that plasticity in the EC is necessary for both spatial and contextual memory, specifically in the retention of behavioral strategies. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the fundamental questions in neuroscience is to understand how encoding of sensory inputs is distributed across neuronal networks in cerebral cortex to influence sensory processing and behavioral performance. The fact that the structure of neuronal networks is organized according to cortical layers raises the possibility that sensory information could be processed differently in distinct layers. The goal of my thesis research is to understand how laminar circuits encode information in their population activity, how the properties of the population code adapt to changes in visual input, and how population coding influences behavioral performance. To this end, we performed a series of novel experiments to investigate how sensory information in the primary visual cortex (V1) emerges across laminar cortical circuits. First, it is commonly known that the amount of information encoded by cortical circuits depends critically on whether or not nearby neurons exhibit correlations. We examined correlated variability in V1 circuits from a laminar-specific perspective and observed that cells in the input layer, which have only local projections, encode incoming stimuli optimally by exhibiting low correlated variability. In contrast, output layers, which send projections to other cortical and subcortical areas, encode information suboptimally by exhibiting large correlations. These results argue that neuronal populations in different cortical layers play different roles in network computations. Secondly, a fundamental feature of cortical neurons is their ability to adapt to changes in incoming stimuli. Understanding how adaptation emerges across cortical layers to influence information processing is vital for understanding efficient sensory coding. We examined the effects of adaptation, on the time-scale of a visual fixation, on network synchronization across laminar circuits. Specific to the superficial layers, we observed an increase in gamma-band (30-80 Hz) synchronization after adaptation that was correlated with an improvement in neuronal orientation discrimination performance. Thus, synchronization enhances sensory coding to optimize network processing across laminar circuits. Finally, we tested the hypothesis that individual neurons and local populations synchronize their activity in real-time to communicate information about incoming stimuli, and that the degree of synchronization influences behavioral performance. These analyses assessed for the first time the relationship between changes in laminar cortical networks involved in stimulus processing and behavioral performance.