2 resultados para Hip Kinematics

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heparan sulfate proteoglycans and their corresponding binding sites have been suggested to play an important role during the initial attachment of blastocysts to uterine epithelium and human trophoblastic cell lines to uterine epithelial cell lines. Previous studies on RL95 cells, a human uterine epithelial cell line, characterized a single class of cell surface heparin/heparan sulfate (HP/HS)-binding sites. Three major HP/HS-binding peptide fragments were isolated from RL95 cell surfaces by tryptic digestion and partial amino-terminal amino acid sequence from each peptide fragment was obtained. In the current study, using the approaches of reverse transcription-polymerase chain reaction and cDNA library screening, a novel cell surface $\rm\underline{H}$P/HS $\rm\underline{i}$nteracting $\rm\underline{p}$rotein (HIP) has been isolated from RL95 cells. The full-length cDNA of HIP encodes a protein of 259 amino acids with a calculated molecular weight of 17,754 Da and pI of 11.75. Transfection of HIP cDNA into NIH-3T3 cells demonstrated cell surface expression and a size similar to that of HIP expressed by human cells. Predicted amino acid sequence indicates that HIP lacks a membrane spanning region and has no consensus sites for glycosylation. Northern blot analysis detected a single transcript of 1.3 kb in both total RNA and poly(A$\sp+$) RNA. Examination of human cell lines and normal tissues using both Northern blot and Western blot analysis revealed that HIP is differentially expressed in a variety of human cell lines and normal tissues, but absent in some cell lines examined. HIP has about 80% homology, at the level of both mRNA and protein, to a rodent protein, designated as ribosomal protein L29. Thus, members of the L29 family may be displayed on cell surfaces where they participate in HP/HS binding events. Studies on a synthetic peptide derived from HIP demonstrate that HIP peptide binds HS/HP with high selectivity and has high affinity (Kd = 10 nM) for a subset of polysaccharides found in commercial HIP preparations. Moreover, HIP peptide also binds certain forms of cell surface, but not secreted or intracellular. HS expressed by RL95 and JAR cells. This peptide supports the attachment of several human trophoblastic cell lines and a variety of mammalian adherent cell lines in a HS-dependent fashion. Furthermore, studies on the subset of HP specifically recognized by HIP peptide indicate that this high-affinity HP (HA-HP) has a larger median MW and a greater negative charge density than bulk HP. The minimum size of oligosaccharide required to bind to HIP peptide with high affinity is a septa- or octasaccharide. HA-HP also quantitatively binds to antithrombin-III (AT-III) with high affinity, indicating that HIP peptide and AT-III may recognize the same or similar oligosaccharide structure(s). Furthermore, HIP peptide antagonizes HP action and promotes blood coagulation in both factor Xa- and thrombin-dependent assays. Finally, HA-HP recognized by HP peptide is highly enriched with anticoagulant activity relative to bulk HP. Collectively, these results demonstrate that HIP may play a role in the HP/HS-involved cell-cell and cell-matrix interactions and recognizes a motif in HP similar or identical to that recognized by AT-III and therefore, may modulate blood coagulation. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human heparin/heparan sulfate interacting protein/L29 (HIP/L29) is a heparin/heparan sulfate (Hp/HS) binding protein found in many adult human tissues. Potential functions of this protein are promotion of embryo adhesion, modulation of blood coagulation, and control of cell growth. While these activities are diverse, the ability of human HIP/L29 to interact with Hp/HS at the cell surface may be a unifying mechanism of action since Hp/HS influences all of these processes. A murine ortholog has been identified that has 78.8% homology over the entire sequence and identity over the N-terminal 64 amino acids when compared to human HIP/L29. Northern, Western, and immunohistochemical analysis shows that murine HIP/L29 mRNA and protein are expressed in a tissue specific manner. Murine HIP/L29 is enriched in the membrane fraction of NmuMG cells where it is eluted with high salt, suggesting that it is a peripheral membrane protein. The ability of murine HIP/L29 to bind Hp is verified by studies using native and recombinant forms of murine HIP/L29. A synthetic peptide (HIP peptide-2) derived from the identical N-terminal region of HIP/L29 proteins was tested for the ability to bind Hp and support cell adhesion. This peptide was chosen because it conforms to a proposed consensus sequence for Hp/HS binding peptides. HIP peptide-2 binds Hp in a dose-dependent, saturable, and selective manner and supports Hp-dependent cell adhesion. However, a scrambled form of this peptide displayed similar activities indicating a lack of peptide sequence specificity required for activity. Lastly, an unbiased approach was used to identify sequences within human and mouse HIP/L29 proteins necessary for Hp/HS binding. A panel of recombinant proteins was made that collectively are deficient in every human HIP/L29 domain. The activities of these deletion mutants and recombinant murine HIP/L29 were compared to the activity of recombinant human HIP/L29 in a number of assays designed to look at differences in the ability to bind Hp/HS. These studies suggest that each domain within human HIP/L29 is important for binding to Hp/HS and divergences in the C-terminus of human and mouse HIP/L29 account for a decrease in murine HIP/L29 affinity for Hp/HS. It is apparent that multiple domains within human and mouse HIP/L29 contribute to the function of Hp/HS binding. The interaction of multiple HIP/L29 domains with Hp/HS will influence the biological activity of HIP/L29 proteins. ^