2 resultados para High strength steel
em DigitalCommons@The Texas Medical Center
Resumo:
A bench-scale treatability study was conducted on a high-strength wastewater from a chemical plant to develop an alternative for the existing waste stabilization pond treatment system. The objective of this study was to determine the treatability of the wastewater by the activated sludge process and, if treatable, to determine appropriate operating conditions, and to evaluate the degradability of bis(2-chloroethyl)ether (Chlorex) and benzene in the activated sludge system. Four 4-L Plexi-glass, complete mixing, continuous flow activated sludge reactors were operated in parallel under different operating conditions over a 6-month period. The operating conditions examined were hydraulic retention time (HRT), sludge retention time (SRT), nutrient supplement, and Chlorex/benzene spikes. Generally the activated sludge system treating high-strength wastewater was stable under large variations of organic loading and operating conditions. At an HRT of 2 days, more than 90% removal efficiency with good sludge settleability was achieved when the organic loading was less than 0.4 g BOD$\sb5$/g MLVSS/d or 0.8 g COD/g MLVSS/d. At least 20 days of SRT was required to maintain steady operation. Phosphorus addition enhanced the performance of the system especially during stressed operation. On the average, removals of benzene and Chlorex were 73-86% and 37-65%, respectively. In addition, the low-strength wastewater was treatable by activated sludge process, showing more than 90% BOD removal at a HRT of 0.5 days. In general, the sludge had poor settling characteristics. The aerated lagoon process treating high-strength wastewater also provided significant organic reduction, but did not produce an acceptable effluent concentration. ^
Resumo:
A 6-month-long, bench-scale simulation of an industrial wastewater stabilization pond (WSP) system was conducted to evaluate responses to several potential performance-enhancing treatments. The industrial WSP system consists of an anaerobic primary (1ry) WSP treating high-strength wastewater, followed by facultative secondary (2ry) and aerobic tertiary (3ry) WSPs in series treating lower-strength wastewater. The 1ry WSP was simulated with four glass aquaria which were fed with wastewater from the actual WSP system. The treatments examined were phosphorus supplementation (PHOS), phosphorus supplementation with pH control (PHOS+ALK), and phosphorus supplementation with pH control and effluent recycle (PHOS+ALK+RCY). The supplementary phosphorus treatment alone did not yield any significant change versus the CONTROL 1ry model pond. The average carbon to phosphorus ratio of the feed wastewater received from the WSP system was already 100:0.019 (i.e., 2,100 mg/l: 0.4 mg/l). The pH-control treatments (PHOS+ALK and PHOS+ALK+RCY) produced significant results, with 9 to 12 percent more total organic carbon (TOC) removal, 43 percent more volatile organic acid (VOA) generation, 78 percent more 2-ethoxyethanol and 14 percent more bis(2-chloroethyl)ether removal, and from 100- to 10,000-fold increases in bacterial enzyme activity and heterotrophic bacterial numbers. Recycling a 10-percent portion of the effluent yielded less variability for certain physicochemical parameters in the PHOS+ALK+RCY 1ry model pond, but overall there was no statistically-detectable improvement in performance versus no recycle. The 2ry and 3ry WSPs were also simulated in the laboratory to monitor the effect and fate of increased phosphorus loadings, as might occur if supplemental phosphorus were added to the 1ry WSP. Noticeable increases in algal growth were observed at feed phosphorus concentrations of 0.5 mg/l; however, there were no significant changes in the monitored physicochemical parameters. The effluent phosphorus concentrations from both the 2ry and 3ry model ponds did increase notably when feed phosphorus concentrations were increased from 0.5 to 1.0 mg/l. ^