14 resultados para Heterozygosity.

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: We hypothesized that, similar to idiopathic hip osteonecrosis, the T-786C mutation of the endothelial nitric oxide synthase (eNOS) gene affecting nitric oxide (NO) production was associated with neuralgia-inducing cavitational osteonecrosis of the jaws (NICO). DESIGN: In 22 NICO patients, not having taken bisphosphonates, mutations affecting NO production (eNOS T-786C, stromelysin 5A6A) were measured by polymerase chain reaction. Two healthy normal control subjects were matched per case by race and gender. RESULTS: Homozygosity for the mutant eNOS allele (TT) was present in 6 out of 22 patients (27%) with NICO compared with 0 out of 44 (0%) race and gender-matched control subjects; heterozygosity (TC) was present in 8 patients (36%) versus 15 control subjects (34%); and the wild-type normal genotype (CC) was present in 9 patients (36%) versus 29 controls (66%) (P = .0008). The mutant eNOS T-786C allele was more common in cases (20 out of 44 [45%]) than in control subjects (15 out of 88 [17%]) (P = .0005). The distribution of the stromelysin 5A6A genotype in cases did not differ from control subjects (P = .13). CONCLUSIONS: The eNOS T-786C polymorphism affecting NO production is associated with NICO, may contribute to the pathogenesis of NICO, and may open therapeutic medical approaches to treatment of NICO through provision of L-arginine, the amino-acid precursor of NO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interpretation of data on genetic variation with regard to the relative roles of different evolutionary factors that produce and maintain genetic variation depends critically on our assumptions concerning effective population size and the level of migration between neighboring populations. In humans, recent population growth and movements of specific ethnic groups across wide geographic areas mean that any theory based on assumptions of constant population size and absence of substructure is generally untenable. We examine the effects of population subdivision on the pattern of protein genetic variation in a total sample drawn from an artificial agglomerate of 12 tribal populations of Central and South America, analyzing the pooled sample as though it were a single population. Several striking findings emerge. (1) Mean heterozygosity is not sensitive to agglomeration, but the number of different alleles (allele count) is inflated, relative to neutral mutation/drift/equilibrium expectation. (2) The inflation is most serious for rare alleles, especially those which originally occurred as tribally restricted "private" polymorphisms. (3) The degree of inflation is an increasing function of both the number of populations encompassed by the sample and of the genetic divergence among them. (4) Treating an agglomerated population as though it were a panmictic unit of long standing can lead to serious biases in estimates of mutation rates, selection pressures, and effective population sizes. Current DNA studies indicate the presence of numerous genetic variants in human populations. The findings and conclusions of this paper are all fully applicable to the study of genetic variation at the DNA level as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Pancreatic cancer is the fourth leading cause of cancer-related death among males and females in the United States. Sel-1-like (SEL1L) is a putative tumor suppressor gene that is downregulated in a significant proportion of human pancreatic ductal adenocarcinoma (PDAC). It was hypothesized that SEL1L expression could be down-modulated by somatic mutation, loss of heterozygosity (LOH), CpG island hypermethylation and/or aberrantly expressed microRNAs (miRNAs). Material and methods: In 42 PDAC tumors, the SEL1L coding region was amplified using reverse transcription polymerase chain reaction (RT-PCR), and analyzed by agarose gel electrophoresis and sequenced to search for mutations. Using fluorescent fragment analysis, two intragenic microsatellites in the SEL1L gene region were examined to detect LOH in a total of 73 pairs of PDAC tumors and normal-appearing adjacent tissues. Bisulfite DNA sequencing was performed to determine the methylation status of the SEL1L promoter in 41 PDAC tumors and 6 PDAC cell lines. Using real-time quantitative PCR, the expression levels of SEL1L mRNA and 7 aberrantly upregulated miRNAs that potentially target SEL1L were assessed in 42 PDAC tumor and normal pairs. Statistical methods were applied to evaluate the correlation between SEL1L mRNA and the miRNAs. Further the interaction was determined by functional analysis using a molecular biological approach. Results: No mutations were detected in the SEL1L coding region. More than 50% of the samples displayed abnormally alternate or aberrant spliced transcripts of SEL1L. About 14.5% of the tumors displayed LOH at the CAR/CAL microsatellite locus and 10.7% at the RepIN20 microsatellite locus. However, the presence of LOH did not show significant association with SEL1L downregulation. No methylation was observed in the SEL1L promoter. Statistical analysis showed that SEL1L mRNA expression levels significantly and inversely correlated with the expression of hsa-mir-143, hsa-mir-155, and hsa-mir-223. Functional analysis indicated that hsa-mir-155 acted as a suppressor of SEL1L in PL18 and MDAPanc3 PDAC cell lines. Discussion: Evidence from these studies suggested that SEL1L was possibly downregulated by aberrantly upregulated miRNAs in PDAC. Future studies should be directed towards developing a better understanding of the mechanisms for generation of aberrant SEL1L transcripts, and further analysis of miRNAs that may downregulate SEL1L.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary objective of this study has been to investigate the effects at the molecular level of trisomy of mouse chromosome 7 in chemically induced skin tumors. It was previously proposed that the initiation event in the mouse skin carcinogenesis model is a heterozygous mutation of the Ha-ras-1 gene, mapped to chromosome 7. Previous studies in this laboratory identified trisomy 7 as one of the primary nonrandom cytogenetic abnormalities found in the majority of severely dysplastic papillomas and squamous cell carcinomas induced in SENCAR mice by an initiation-promotion protocol. Therefore, the first hypothesis tested was that trisomy 7 occurs by specific duplication of the chromosome carrying a mutated Ha-ras-1 allele. Results of a quantitative analysis of normal/mutated allelic ratios of the Ha-ras-1 gene confirmed this hypothesis, showing that most of the tumors exhibited overrepresentation of the mutated allele in the form of 1/2, 0/3, and 0/2 (normal/mutated) ratios. In addition, histopathological analysis of the tumors showed an apparent association between the degree of malignancy and the dosage of the mutated Ha-ras-1 allele. To determine the mechanism for loss of the normal Ha-ras-1 allele, found in 30% of the tumors, a comparison of constitutional and tumor genotypes was performed at different informative loci of chromosome 7. By combining Southern blot and polymerase chain reaction fragment length polymorphism analyses of DNAs extracted from squamous cell carcinomas, complete loss of heterozygosity was detected in 15 of 20 tumors at the Hbb locus, and in 5 of 5 tumors at the int-2 locus, both distal to Ha-ras-1. In addition, polymerase chain reaction analysis of DNA extracted from papillomas indicated that loss of heterozygosity occurs in late-stage lesions exhibiting a high degree of dysplasia and areas of microinvasion, suggesting that this event may be associated to the acquisition of the malignant phenotype. Allelic dosage analysis of tumors that had become homozygous at Hbb but retained heterozygosis at Ha-ras-1, indicated that loss of heterozygosity on mouse chromosome 7 occurs by a mitotic recombination mechanism. Overall, these findings suggest the presence of a putative tumor suppressor locus on the 7F1-ter region of mouse chromosome 7. Thus, loss of function by homozygosis at this putative suppressor locus may complement activation of the Ha-ras-1 gene during tumor progression, and might be associated with the malignant conversion stage of mouse skin carcinogenesis. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tumor-specific loss of constitutional heterozygosity by deletion, mitotic recombination or nondisjunction is a common mechanism for tumor suppressor allele inactivation. When loss of heterozygosity is the result of mitotic recombination, or a segmental deletion event, only a portion of the chromosome is lost. This information can be used to map the location of new tumor suppressor genes. In osteosarcoma, the highest frequencies of loss of heterozygosity have been reported for chromosomes 3q, 13q, 17p. On chromosomes 13q and 17p, allelic losses are associated with loss of function at the retinoblastoma susceptibility locus (RB1) and the p53 locus, respectively. Chromosome 3q is also of particular interest because the high percent of loss of heterozygosity (62%-75%) suggests the presence of another tumor suppressor important for osteosarcoma tumorigenesis. To localize this putative tumor suppressor gene, we used polymorphic markers on chromosome 3q to find the smallest common region of allele loss. This putative tumor suppressor was localized to a 700 kb region on chromosome 3q26.2 between the polymorphic loci D3S1282 and D3S1246. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alterations in oncogenes and tumor suppressor genes (TSGs) are considered to be critical steps in oncogenesis. Consistent deletions and loss of heterozygosity (LOH) of polymorphic markers in a determinate chromosomal fragment are known to be indicative of a closely mapping TSG. Deletion of the long arm of chromosome 7 (hchr 7) is a frequent trait in many kinds of human primary tumors. LOH was studied with an extensive set of markers on chromosome 7q in several types of human neoplasias (primary breast, prostate, colon, ovarian and head and neck carcinomas) to determine the location of a putative TSG. The extent of LOH varied depending the type of tumor studied but all the LOH curves we obtained had a peak at (C-A)$\sb{\rm n}$ microsatellite repeat D7S522 at 7q31.1 and showed a Gaussian distribution. The high incidence of LOH in all tumor types studied suggests that a TSG relevant to the development of epithelial cancers is present on the 7q31.1. To investigate whether the putative TSG is conserved in the syntenic mouse locus, we studied LOH of 30 markers along mouse chromosome 6 (mchr 6) in chemically induced squamous cell carcinomas (SCCs). Tumors were obtained from SENCAR and C57BL/6 x DBA/2 F1 females by a two-stage carcinogenesis protocol. The high incidence of LOH in the tumor types studied suggests that a TSG relevant to the development of epithelial cancers is present on mchr 6 A1. Since this segment is syntenic with the hchr 7q31, these data indicate that the putative TSG is conserved in both species. Functional evidence for the existence of a TSG in hchr 7 was obtained by microcell fusion transfer of a single hchr 7 into a murine SCC-derived cell line. Five out of seven hybrids had two to three-fold longer latency periods for in vivo tumorigenicity assays than parental cells. One of the unrepressed hybrids had a deletion in the introduced chromosome 7 involving q31.1-q31.3, confirming the LOH data. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Von Hippel-Lindau (VHL) disease is an autosomal dominant disorder characterized by the development of retinal and central nervous system hemangioblastoma, renal cell carcinoma (RCC), pheochromocytoma and pancreatic islet cell tumors (PICT). The VHL gene maps to chromosome 3p25 and has been shown to be mutated in 57% of sporadic cases of RCC, implicating VHL in the genesis of RCC. We report a multigeneration VHL kindred in which four affected female siblings developed PICT at early ages. Analysis of the three coding exons of the VHL gene in this family revealed a single, missense mutation in codon 238. Inheritance of the 238 mutation has been reported to correlate with a 62% risk of pheochromocytoma development. In this kindred, all affected individuals carried the mutation as well as one additional sibling who showed no evidence of disease. Clinical screening of this individual indicated small ($<$1 cm) pancreatic and kidney tumors. Results suggest that inheritance of the codon 238 mutation does not correlate with early onset pheochromocytoma. Rather, the only individual in the pedigree with pheochromocytoma was the proband's mother who developed bilateral pheochromocytoma at the age of 62. Thus, the VHL codon 238 mutation may predispose to late onset pheochromocytoma in this family; however, it does not explain the preponderance of PICT in the third generation since this mutation has not been reported to increase the risk of developing pancreatic lesions. This suggests that inheritance of the codon 238 mutation and subsequent somatic inactivation of the wild type allele of the VHL gene may not be sufficient to explain the initiation and subsequent progression to malignancy in VHL-associated neoplasms. Since the two tumor types that most frequently progress to malignancy are RCC and PICT, we asked whether loss of heterozygosity (LOH) could be detected proximal to the VHL gene on chromosome 3 in distinct regions of 3p previously implicated by LOH and cytogenetic studies to contain tumor suppressor loci for RCC. LOH was performed on high molecular weight DNA isolated from peripheral blood and frozen tumor tissue of family members using microsatellite markers spanning 3p. Results indicated LOH for all informative 3p loci in tumor tissue from affected individuals with PICT. LOH was detected along the entire length of the chromosome arm and included the proximal region of 3p13-14.2 implicated in the hereditary form of renal cell carcinoma.^ If 3p LOH were a critical event in pancreatic islet cell tumorigenesis, then it should be expected that LOH in sporadic islet cell tumors would also be observed. We expanded LOH studies to include sporadic cases of PICT. Consistent LOH was observed on 3p with a highest frequency LOH in the region 3p21.2. This is the first evidence for an association between chromosome 3 loci and pancreatic islet cell tumorigenesis. (Abstract shortened by UMI.) ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Linkage disequilibrium methods can be used to find genes influencing quantitative trait variation in humans. Linkage disequilibrium methods can require smaller sample sizes than linkage equilibrium methods, such as the variance component approach to find loci with a specific effect size. The increase in power is at the expense of requiring more markers to be typed to scan the entire genome. This thesis compares different linkage disequilibrium methods to determine which factors influence the power to detect disequilibrium. The costs of disequilibrium and equilibrium tests were compared to determine whether the savings in phenotyping costs when using disequilibrium methods outweigh the additional genotyping costs.^ Nine linkage disequilibrium tests were examined by simulation. Five tests involve selecting isolated unrelated individuals while four involved the selection of parent child trios (TDT). All nine tests were found to be able to identify disequilibrium with the correct significance level in Hardy-Weinberg populations. Increasing linked genetic variance and trait allele frequency were found to increase the power to detect disequilibrium, while increasing the number of generations and distance between marker and trait loci decreased the power to detect disequilibrium. Discordant sampling was used for several of the tests. It was found that the more stringent the sampling, the greater the power to detect disequilibrium in a sample of given size. The power to detect disequilibrium was not affected by the presence of polygenic effects.^ When the trait locus had more than two trait alleles, the power of the tests maximized to less than one. For the simulation methods used here, when there were more than two-trait alleles there was a probability equal to 1-heterozygosity of the marker locus that both trait alleles were in disequilibrium with the same marker allele, resulting in the marker being uninformative for disequilibrium.^ The five tests using isolated unrelated individuals were found to have excess error rates when there was disequilibrium due to population admixture. Increased error rates also resulted from increased unlinked major gene effects, discordant trait allele frequency, and increased disequilibrium. Polygenic effects did not affect the error rates. The TDT, Transmission Disequilibrium Test, based tests were not liable to any increase in error rates.^ For all sample ascertainment costs, for recent mutations ($<$100 generations) linkage disequilibrium tests were less expensive than the variance component test to carry out. Candidate gene scans saved even more money. The use of recently admixed populations also decreased the cost of performing a linkage disequilibrium test. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wilms' tumor (WT) is a childhood embryonic tumor of the kidney. In some cases, WT has been associated with a chromosome deletion in the region 11p13. The majority of WT cases, however, have normal karyotypes with no discernable deletions or rearrangements of chromosome 11.^ To study the genetic events predisposing to the development of WT, I have used a number of gene markers specific for chromosome 11. Gene probes for human catalase and apolipoprotein A1 were localized to chromosome 11 by in situ hybridization. A number of other probes previously mapped to chromosome 11 were also used. Nine WT patients who were heterozygous for at least one 11p marker were shown to lose heterozygosity in their tumor DNA. Gene dosage experiments demonstrated that two chromosomes 11 were present although loss of heterozygosity had occurred in all but two cases. By using gene probes from the short and long arms of chromosome 11, I discerned that loss of heterozygosity was due to somatic recombination in four cases, chromosome deletion in two cases, and chromosome loss and reduplication or somatic recombination in these cases. Examination of DNAs from the parents of six of these patients indicated that the alleles that were lost in tumor tissues were alleles inherited from the mother. In sporadic WT cases one would expect the loss of alleles to be random. These data suggest that the loss of alleles resulting in the development of WT is not a random event, however, the significance of this is not known. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Frequent loss of heterozygosity (LOH) at specific chromosomal regions are highly associated with the inactivation of tumor suppressor genes (TSGs) (Weinberg, 1991; Bishop, 1989). Chromosome 8p is the most frequently reported site of LOH (∼60%) in prostate cancer (PC), suggesting that there may be inactivated TSG(s) involved in PC on chromosome 8p. (Bergerheim et. al., 1991; Kagan et. al., 1995). In order to identify the smallest common regions of frequent LOH (SCLs) on chromosome 8, we screened 52 PC patient/tumor samples with 39 polymorphic markers in successive screenings. In the course of refining the SCLs, we identified 3 tumors with >6 Mb homozygous deletions (HZDs) at 8p22 and 8p21, suggesting the presence of candidate TSGs at both loci. These HZDs spanned the two SCLs at 8p22 (46%) and 8p21 (45%). The SCLs were narrowed to 3.2 cM at 8p22 and less than 3 cM at 8p21. ^ In order to identify candidate TSGs within the SCLs on 8p, two approaches were used. In the candidate gene approach, thirty genes that mapped to the SCLs were evaluated for expression in normal prostate and in PC cell lines. One of the candidate genes, Clusterin, showed decreased expression in 4/7 (57%) prostate cancer cell lines by Northern blot analysis. Clusterin will be further examined as a candidate TSG. ^ The second approach involved utilizing subtractive hybridization and hybrid affinity capture to generate pools of expressed sequence tags (ESTs) enriched for genes that are downregulated or deleted in PC and that map to specific regions of interest. We took advantage of a prostate cancer cell line (PC3) with a known HZD of a candidate TSG, CTNNA1 on 5q31, to develop and validate a model system. We then developed subtracted libraries enriched for 8p22 and 8p21 ESTs by this method, using two cell lines, MDAPCa-2b and PC3. The ESTs were cloned, and 40 were sequenced and evaluated for expression in normal prostate and PC cell lines. Three ESTs from the subtracted libraries, C2, C17 and F12, showed decreased expression in 29–57% of the prostate tumor cell lines studied, and will be further examined as candidate TSGs. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neural tube defects (NTDs) are the most common severely disabling birth defects in the United States, with a frequency of approximately 1–2 of every 1,000 births. This text includes the identification and evaluation of candidate susceptibility genes that confer risk for the development of neural tube defects (NTDs). The project focused on isolated meningomyelocele, also termed spina bifida (SB). ^ Spina bifida is a complex disease with multifactorial inheritance, therefore the subject population (consisting of North American Caucasians and Hispanics of Mexicali-American descent) was composed of 459 simplex SB families who were tested for genetic associations utilizing the transmission disequilibrium test (TDT), a nonparametric linkage technique. Three categories of candidate genes were studied, including (1) human equivalents of genes determined in mouse models to cause NTDs, (2) HOX and PAX genes, and (3) the MTHFR gene involved in the metabolic pathway of folate. ^ The C677T variant of the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene was the first mutation in this gene to be implicated as a risk factor for NTDs. Our evaluation of the MTHFR gene provides evidence that maternal C677T homozygosity is a risk factor for upper level spina bifida defects in Hispanics [OR = 2.3, P = 0.02]. This observed risk factor is of great importance due to the high prevalence of this homozygous genotype in the Hispanic population. Additionally, maternal C677T/A1298C compound heterozygosity is a risk factor for upper level spina bifida defects in non-Hispanic whites [OR = 3.6, P = 0.03]. ^ For TDT analysis, our total population of 1128 subjects were genotyped for 54 markers from within and/or flanking the 20 candidate genes/gene regions of interest. Significant TDT findings were obtained for 3 of the 54 analyzed markers: d20s101 flanking the PAX1 gene (P = 0.019), d1s228 within the PAX7 gene (P = 0.011), and d2s110 within the PAX8 gene (P = 0.013). These results were followed-up by testing the genes directly for mutations utilizing single-strand conformational analysis (SSCA) and direct sequencing. Multiple variations were detected in each of these PAX genes; however, these variations were not passed from parent to child in phase with the positively transmitted alleles. Therefore, these variations do not contribute to the susceptibility of spina bifida, but rather are previously unreported single nucleotide polymorphisms. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prostate cancer remains the second leading cause of male cancer deaths in the United States, yet the molecular mechanisms underlying this disease remain largely unknown. Cytogenetic and molecular analyses of prostate tumors suggest a consistent association with the loss of chromosome 10. Previously, we have defined a novel tumor suppressor locus PAC-1 within chromosome 10pter-q11. Introduction of the short arm of chromosome 10 into a prostatic adenocarcinoma cell line PC-3H resulted in dramatic tumor suppression and restoration of a programmed cell death pathway. Using a combined approach of comparative genomic hybridization and microsatellite analysis of PC-3H, I have identified a region of hemizygosity within 10p12-p15. This region has been shown to be involved in frequent loss of heterozygosity in gliomas and melanoma. To functionally dissect the region within chromosome 10p containing PAC-1, we developed a strategy of serial microcell fusion, a technique that allows the transfer of defined fragments of chromosome 10p into PC-3H. Serial microcell fusion was used to transfer defined 10p fragments into a mouse A9 fibrosarcoma cell line. Once characterized by FISH and microsatellite analyses, the 10p fragments were subsequently transferred into PC-3H to generate a panel of microcell hybrid clones containing overlapping deletions of chromosome 10p. In vivo and microsatellite analyses of these PC hybrids identified a small chromosome 10p fragment (an estimated 31 Mb in size inclusive of the centromere) that when transferred into the PC-3H background, resulted in significant tumor suppression and limited a region of functional tumor suppressor activity to chromosome 10p12.31-q11. This region coincides with a region of LOH demonstrated in prostate cancer. These studies demonstrate the utility of this approach as a powerful tool to limit regions of functional tumor suppressor activity. Furthermore, these data used in conjunction with data generated by the Human Genome Project lent a focused approach to identify candidate tumor suppressor genes involved in prostate cancer. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Renal cell carcinoma (RCC) is the most common malignant tumor of the kidney. Characterization of RCC tumors indicates that the most frequent genetic event associated with the initiation of tumor formation involves a loss of heterozygosity or cytogenetic aberration on the short arm of human chromosome 3. A tumor suppressor locus Nonpapillary Renal Carcinoma-1 (NRC-1, OMIM ID 604442) has been previously mapped to a 5–7 cM region on chromosome 3p12 and shown to induce rapid tumor cell death in vivo, as demonstrated by functional complementation experiments. ^ To identify the gene that accounts for the tumor suppressor activities of NRC-1, fine-scale physical mapping was conducted with a novel real-time quantitative PCR based method developed in this study. As a result, NRC-1 was mapped within a 4.6-Mb region defined by two unique sequences within UniGene clusters Hs.41407 and Hs.371835 (78,545Kb–83,172Kb in the NCBI build 31 physical map). The involvement of a putative tumor suppressor gene Robo1/Dutt1 was excluded as a candidate for NRC-1. Furthermore, a transcript map containing eleven candidate genes was established for the 4.6-Mb region. Analyses of gene expression patterns with real-time quantitative RT-PCR assays showed that one of the eleven candidate genes in the interval (TSGc28) is down-regulated in 15 out of 20 tumor samples compared with matched normal samples. Three exons of this gene have been identified by RACE experiments, although additional exon(s) seem to exist. Further gene characterization and functional studies are required to confirm the gene as a true tumor suppressor gene. ^ To study the cellular functions of NRC-1, gene expression profiles of three tumor suppressive microcell hybrids, each containing a functional copy of NRC-1, were compared with those of the corresponding parental tumor cell lines using 16K oligonucleotide microarrays. Differentially expressed genes were identified. Analyses based on the Gene Ontology showed that introduction of NRC-1 into tumor cell lines activates genes in multiple cellular pathways, including cell cycle, signal transduction, cytokines and stress response. NRC-1 is likely to induce cell growth arrest indirectly through WEE1. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mammalian target of rapamycin (mTOR) plays an important role in regulating various cellular functions, and the tuberous sclerosis 1 (TSC1)/TSC2 complex serves as a major repressor of the mTOR pathway. Here we demonstrated that arrest-defective protein 1 (ARD1) physically interacts with, acetylates, and stabilizes TSC2, thereby reducing mTOR activity. The inhibition of mTOR by ARD1 suppresses cell proliferation and increases autophagy, which further impairs tumorigenicity. Correlation between the levels of ARD1 and TSC2 was found in multiple tumor types, suggesting the physiological importance of ARD1 in stabilizing TSC2. Moreover, evaluation of loss of heterozygosity (LOH) at Xq28 revealed allelic loss in 31% of tested breast cancer cell lines and tumor samples. Together, our findings suggest that ARD1 functions as a negative regulator of the mTOR pathway and that dysregulation of the ARD1/TSC2/mTOR axis may contribute to cancer development. To further explore the signaling pathway of ARD1, we provided evidence showing the phosphorylation of ARD1 by IKKβ, which mediated the destabilization of ARD1. Future work may be needed to study the biological effect of this post-translational modification. ^