5 resultados para Heterogeneous multiprocessors

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current state of health and biomedicine includes an enormity of heterogeneous data ‘silos’, collected for different purposes and represented differently, that are presently impossible to share or analyze in toto. The greatest challenge for large-scale and meaningful analyses of health-related data is to achieve a uniform data representation for data extracted from heterogeneous source representations. Based upon an analysis and categorization of heterogeneities, a process for achieving comparable data content by using a uniform terminological representation is developed. This process addresses the types of representational heterogeneities that commonly arise in healthcare data integration problems. Specifically, this process uses a reference terminology, and associated "maps" to transform heterogeneous data to a standard representation for comparability and secondary use. The capture of quality and precision of the “maps” between local terms and reference terminology concepts enhances the meaning of the aggregated data, empowering end users with better-informed queries for subsequent analyses. A data integration case study in the domain of pediatric asthma illustrates the development and use of a reference terminology for creating comparable data from heterogeneous source representations. The contribution of this research is a generalized process for the integration of data from heterogeneous source representations, and this process can be applied and extended to other problems where heterogeneous data needs to be merged.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Radiological Physics Center (RPC) provides heterogeneous phantoms that are used to evaluate radiation treatment procedures as part of a comprehensive quality assurance program for institutions participating in clinical trials. It was hypothesized that the existing RPC heterogeneous thorax phantom can be modified to assess lung tumor proton beam therapy procedures involving patient simulation, treatment planning, and treatment delivery, and could confirm agreement between the measured dose and calculated dose within 5%/3mm with a reproducibility of 5%. The Hounsfield Units (HU) for lung equivalent materials (balsa wood and cork) was measured using a CT scanner. The relative linear stopping power (RLSP) of these materials was measured. The linear energy transfer (LET) of Gafchromic EBT2 film was analyzed utilizing parallel and perpendicular orientations in a water tank and compared to ion chamber readings. Both parallel and perpendicular orientations displayed a quenching effect underperforming the ion chamber, with the parallel orientation showing an average 31 % difference and the perpendicular showing an average of 15% difference. Two treatment plans were created that delivered the prescribed dose to the target volume, while achieving low entrance doses. Both treatment plans were designed using smeared compensators and expanded apertures, as would be utilized for a patient in the clinic. Plan 1a contained two beams that were set to orthogonal angles and a zero degree couch kick. Plan 1b utilized two beams set to 10 and 80 degrees with a 15 degree couch kick. EBT2 film and TLD were inserted and the phantom was irradiated 3 times for each plan. Both plans passed the criteria for the TLD measurements where the TLD values were within 7% of the dose calculated by Eclipse. Utilizing the 5%/3mm criteria, the 3 trial average of overall pass rate was 71% for Plan 1a. The 3 trial average for the overall pass rate was 76% for Plan 1b. The trials were then analyzed using RPC conventional lung treatment guidelines set forth by the RTOG: 5%/5mm, and an overall pass rate of 85%. Utilizing these criteria, only Plan 1b passed for all 3 trials, with an average overall pass rate of 89%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Dasatinib is a dual Src/Abl inhibitor recently approved for Bcr-Abl+ leukemias with resistance or intolerance to prior therapy. Because Src kinases contribute to multiple blood cell functions by triggering a variety of signaling pathways, we hypothesized that their molecular targeting might lead to growth inhibition in acute myeloid leukemia (AML). EXPERIMENTAL DESIGN: We studied growth factor-dependent and growth factor-independent leukemic cell lines, including three cell lines expressing mutants of receptor tyrosine kinases (Flt3 or c-Kit) as well as primary AML blasts for responsiveness to dasatinib. RESULTS: Dasatinib resulted in the inhibition of Src family kinases in all cell lines and blast cells at approximately 1 x 10(-9) mol/L. It also inhibited mutant Flt3 or Kit tyrosine phosphorylation at approximately 1 x 10(-6) mol/L. Mo7e cells expressing the activating mutation (codon 816) of c-Kit were most sensitive to growth inhibition with a GI(50) of 5 x 10(-9) mol/L. Primary AML blast cells exhibited a growth inhibition of <1 x>10(-6) mol/L. Cell lines that showed growth inhibition at approximately 1 x 10(-6) mol/L showed a G(1) cell cycle arrest and correlated with accumulation of p21 and p27 protein. The addition of rapamycin or cytotoxic agents enhanced growth inhibition. Dasatinib also caused the apoptosis of Mo7e cells expressing oncogenic Kit. CONCLUSIONS: Although all of the precise targets for dasatinib are not known, this multikinase inhibitor causes either growth arrest or apoptosis in molecularly heterogeneous AML. The addition of cytotoxic or targeted agents can enhance its effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms underlying cellular response to proteasome inhibitors have not been clearly elucidated in solid tumor models. Evidence suggests that the ability of a cell to manage the amount of proteotoxic stress following proteasome inhibition dictates survival. In this study using the FDA-approved proteasome inhibitor bortezomib (Velcade®) in solid tumor cells, we demonstrated that perhaps the most critical response to proteasome inhibition is repression of global protein synthesis by phosphorylation of the eukaryotic initiation factor 2-α subunit (eIF2α). In a panel of 10 distinct human pancreatic cancer cells, we showed marked heterogeneity in the ability of cancer cells to induce eIF2α phosphorylation upon stress (eIF2α-P); lack of inducible eIF2α-P led to excessive accumulation of aggregated proteins, reactive oxygen species, and ultimately cell death. In addition, we examined complementary cytoprotective mechanisms involving the activation of the heat shock response (HSR), and found that induction of heat shock protein 70 kDa (Hsp72) protected against proteasome inhibitor-induced cell death in human bladder cancer cells. Finally, investigation of a novel histone deacetylase 6 (HDAC6)-selective inhibitor suggested that the cytoprotective role of the cytoplasmic histone deacetylase 6 (HDAC6) in response to proteasome inhibition may have been previously overestimated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DEVELOPMENT AND IMPLEMENTATION OF A DYNAMIC HETEROGENEOUS PROTON EQUIVALENT ANTHROPOMORPHIC THORAX PHANTOM FOR THE ASSESSMENT OF SCANNED PROTON BEAM THERAPY by James Leroy Neihart, B.S. APPROVED: ______________________________David Followill, Ph.D. ______________________________Peter Balter, Ph.D. ______________________________Narayan Sahoo, Ph.D. ______________________________Kenneth Hess, Ph.D. ______________________________Paige Summers, M.S. APPROVED: ____________________________ Dean, The University of Texas Graduate School of Biomedical Sciences at Houston DEVELOPMENT AND IMPLEMENTATION OF A DYNAMIC HETEROGENEOUS PROTON EQUIVALENT ANTHROPOMORPHIC THORAX PHANTOM FOR THE ASSESSMENT OF SCANNED PROTON BEAM THERAPY A THESIS Presented to the Faculty of The University of Texas Health Science Center at Houston andThe University of TexasMD Anderson Cancer CenterGraduate School of Biomedical Sciences in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE by James Leroy Neihart, B.S. Houston, Texas Date of Graduation August, 2013 Acknowledgments I would like to acknowledge my advisory committee members, chair David Followill, Ph.D., Peter Balter, Ph.D, Narayan Sahoo, Ph.D., Kenneth Hess, Ph.D., Paige Summers M.S. and, for their time and effort contributed to this project. I would additionally like to thank the faculty and staff at the PTC-H and the RPC who assisted in many aspects of this project. Falk Pӧnisch, Ph.D. for his breath hold proton therapy treatment expertise, Matt Palmer and Jaques Bluett for proton dosimetry assistance, Matt Kerr for verification plan assistance, Carrie Amador, Nadia Hernandez, Trang Nguyen, Andrea Molineu, Lynda McDonald for TLD and film dosimetry assistance. Finally, I would like to thank my wife and family for their support and encouragement during my research and studies. Development and implementation of a dynamic heterogeneous proton equivalent anthropomorphic thorax phantom for the assessment of scanned proton beam therapy By: James Leroy Neihart, B.S. Chair of Advisory Committee: David Followill, Ph.D Proton therapy has been gaining ground recently in radiation oncology. To date, the most successful utilization of proton therapy is in head and neck cases as well as prostate cases. These tumor locations do not suffer from the resulting difficulties of treatment delivery as a result of respiratory motion. Lung tumors require either breath hold or motion tracking, neither of which have been assessed with an end-to-end phantom for proton treatments. Currently, the RPC does not have a dynamic thoracic phantom for proton therapy procedure assessment. Additionally, such a phantom could be an excellent means of assessing quality assurance of the procedures of proton therapy centers wishing to participate in clinical trials. An eventual goal of this phantom is to have a means of evaluating and auditing institutions for the ability to start clinical trials utilizing proton therapy procedures for lung cancers. Therefore, the hypothesis of this study is that a dynamic anthropomorphic thoracic phantom can be created to evaluate end-to-end proton therapy treatment procedures for lung cancer to assure agreement between the measured and calculated dose within 5% / 5 mm with a reproducibility of 2%. Multiple materials were assessed for thoracic heterogeneity equivalency. The phantom was designed from the materials found to be in greatest agreement. The phantom was treated in an end-to-end treatment four times, which included simulation, treatment planning and treatment delivery. Each treatment plan was delivered three times to assess reproducibility. The dose measured within the phantom was compared to that of the treatment plan. The hypothesis was fully supported for three of the treatment plans, but failed the reproducibility requirement for the most aggressive treatment plan.