7 resultados para Heterogeneous information network
em DigitalCommons@The Texas Medical Center
Resumo:
The federal government is currently developing the Nationwide Health Information Network (NHIN). Described as a “network of networks,” the NHIN seeks to provide a nationwide, interoperable health information infrastructure that will securely connect consumers with those involved in health care. As part of the national health information technology (HIT) agenda, the NHIN aims to improve individual and population health by enabling health information to follow the consumer, be available for clinical decision-making, and support important public health measures such as biosurveillance. While the NHIN promises to improve clinical care to individuals and to reduce U.S. health care system costs overall, this electronic environment presents novel challenges for protecting individually identifiable health information. A major barrier to achieving public trust in the NHIN is the development of, and adherence to, a consistent and coordinated approach to privacy and security of health information. This paper will analyze the policy framework for electronic health information exchange with the NHIN. This exercise will demonstrate that the current policy is an effective framework for achieving effective biosurveillance with the NHIN. ^
Resumo:
The current state of health and biomedicine includes an enormity of heterogeneous data ‘silos’, collected for different purposes and represented differently, that are presently impossible to share or analyze in toto. The greatest challenge for large-scale and meaningful analyses of health-related data is to achieve a uniform data representation for data extracted from heterogeneous source representations. Based upon an analysis and categorization of heterogeneities, a process for achieving comparable data content by using a uniform terminological representation is developed. This process addresses the types of representational heterogeneities that commonly arise in healthcare data integration problems. Specifically, this process uses a reference terminology, and associated "maps" to transform heterogeneous data to a standard representation for comparability and secondary use. The capture of quality and precision of the “maps” between local terms and reference terminology concepts enhances the meaning of the aggregated data, empowering end users with better-informed queries for subsequent analyses. A data integration case study in the domain of pediatric asthma illustrates the development and use of a reference terminology for creating comparable data from heterogeneous source representations. The contribution of this research is a generalized process for the integration of data from heterogeneous source representations, and this process can be applied and extended to other problems where heterogeneous data needs to be merged.
Resumo:
The hippocampus receives input from upper levels of the association cortex and is implicated in many mnemonic processes, but the exact mechanisms by which it codes and stores information is an unresolved topic. This work examines the flow of information through the hippocampal formation while attempting to determine the computations that each of the hippocampal subfields performs in learning and memory. The formation, storage, and recall of hippocampal-dependent memories theoretically utilize an autoassociative attractor network that functions by implementing two competitive, yet complementary, processes. Pattern separation, hypothesized to occur in the dentate gyrus (DG), refers to the ability to decrease the similarity among incoming information by producing output patterns that overlap less than the inputs. In contrast, pattern completion, hypothesized to occur in the CA3 region, refers to the ability to reproduce a previously stored output pattern from a partial or degraded input pattern. Prior to addressing the functional role of the DG and CA3 subfields, the spatial firing properties of neurons in the dentate gyrus were examined. The principal cell of the dentate gyrus, the granule cell, has spatially selective place fields; however, the behavioral correlates of another excitatory cell, the mossy cell of the dentate polymorphic layer, are unknown. This report shows that putative mossy cells have spatially selective firing that consists of multiple fields similar to previously reported properties of granule cells. Other cells recorded from the DG had single place fields. Compared to cells with multiple fields, cells with single fields fired at a lower rate during sleep, were less likely to burst, and were more likely to be recorded simultaneously with a large population of neurons that were active during sleep and silent during behavior. These data suggest that single-field and multiple-field cells constitute at least two distinct cell classes in the DG. Based on these characteristics, we propose that putative mossy cells tend to fire in multiple, distinct locations in an environment, whereas putative granule cells tend to fire in single locations, similar to place fields of the CA1 and CA3 regions. Experimental evidence supporting the theories of pattern separation and pattern completion comes from both behavioral and electrophysiological tests. These studies specifically focused on the function of each subregion and made implicit assumptions about how environmental manipulations changed the representations encoded by the hippocampal inputs. However, the cell populations that provided these inputs were in most cases not directly examined. We conducted a series of studies to investigate the neural activity in the entorhinal cortex, dentate gyrus, and CA3 in the same experimental conditions, which allowed a direct comparison between the input and output representations. The results show that the dentate gyrus representation changes between the familiar and cue altered environments more than its input representations, whereas the CA3 representation changes less than its input representations. These findings are consistent with longstanding computational models proposing that (1) CA3 is an associative memory system performing pattern completion in order to recall previous memories from partial inputs, and (2) the dentate gyrus performs pattern separation to help store different memories in ways that reduce interference when the memories are subsequently recalled.
Resumo:
This investigation examined the clonal dynamics of B-cell expression and evaluated the role of idiotype network interactions in shaping the expressed secondary B-cell repertoire. Three interrelated experimental approaches were applied. The first approach was designed to distinguish between regulatory influences controlled by the major histocompatibility complex (MHC) and regulatory influences controlled by non-MHC factors including the idiotype network. This approach consisted of studies on the clonal dynamics and heterogeneity of the expressed IgG antibody repertoire of BALB/c mice. The second approach involved the analysis of the clonal dynamics of antibody responses of outbred rabbits. This analysis was coupled with studies to detect the occurrence and activity of constituents of the idiotype network. In the third approach the transfer of rabbit lymphocytes from immunized donors to MHC matched naive recipients was used to examine the effects of recipient non-MHC immunoregulatory influences on the expression of donor memory B-cells. Although many memory B cells were unaffected by non-MHC influences, these data show that non-MHC immunoregulatory influences can affect the expression of B-cells in the secondary response of inbred mice and outbred rabbits. The results also indicate that most IgG antibody responses are heterogeneous and are characterized by a stable group of dominant clonotypes. Clonal dominance and B-cell memory were found to be established early in an immune response. The expression of B memory clones appeared to be favored over the expression of virgin B cells. The injection of anti-tetanus antibody induced the antigen independent production of anti-tetanus antibody, probably through idiotypic mechanisms. These results demonstrate that both antibody and antigen can affect the expressed B-ceIl repertoire. Thus, idiotypic interactions are capable of influencing the expression of B-cells and these findings support the existence and function of an idiotype network with strong immunoregulatory potential. ^
Resumo:
Early Employee Assistance Programs (EAPs) had their origin in humanitarian motives, and there was little concern for their cost/benefit ratios; however, as some programs began accumulating data and analyzing it over time, even with single variables such as absenteeism, it became apparent that the humanitarian reasons for a program could be reinforced by cost savings particularly when the existence of the program was subject to justification.^ Today there is general agreement that cost/benefit analyses of EAPs are desirable, but the specific models for such analyses, particularly those making use of sophisticated but simple computer based data management systems, are few.^ The purpose of this research and development project was to develop a method, a design, and a prototype for gathering managing and presenting information about EAPS. This scheme provides information retrieval and analyses relevant to such aspects of EAP operations as: (1) EAP personnel activities, (2) Supervisory training effectiveness, (3) Client population demographics, (4) Assessment and Referral Effectiveness, (5) Treatment network efficacy, (6) Economic worth of the EAP.^ This scheme has been implemented and made operational at The University of Texas Employee Assistance Programs for more than three years.^ Application of the scheme in the various programs has defined certain variables which remained necessary in all programs. Depending on the degree of aggressiveness for data acquisition maintained by program personnel, other program specific variables are also defined. ^
Resumo:
Genome-wide association studies (GWAS) have rapidly become a standard method for disease gene discovery. Many recent GWAS indicate that for most disorders, only a few common variants are implicated and the associated SNPs explain only a small fraction of the genetic risk. The current study incorporated gene network information into gene-based analysis of GWAS data for Crohn's disease (CD). The purpose was to develop statistical models to boost the power of identifying disease-associated genes and gene subnetworks by maximizing the use of existing biological knowledge from multiple sources. The results revealed that Markov random field (MRF) based mixture model incorporating direct neighborhood information from a single gene network is not efficient in identifying CD-related genes based on the GWAS data. The incorporation of solely direct neighborhood information might lead to the low efficiency of these models. Alternative MRF models looking beyond direct neighboring information are necessary to be developed in the future for the purpose of this study.^
Resumo:
The genomic era brought by recent advances in the next-generation sequencing technology makes the genome-wide scans of natural selection a reality. Currently, almost all the statistical tests and analytical methods for identifying genes under selection was performed on the individual gene basis. Although these methods have the power of identifying gene subject to strong selection, they have limited power in discovering genes targeted by moderate or weak selection forces, which are crucial for understanding the molecular mechanisms of complex phenotypes and diseases. Recent availability and rapid completeness of many gene network and protein-protein interaction databases accompanying the genomic era open the avenues of exploring the possibility of enhancing the power of discovering genes under natural selection. The aim of the thesis is to explore and develop normal mixture model based methods for leveraging gene network information to enhance the power of natural selection target gene discovery. The results show that the developed statistical method, which combines the posterior log odds of the standard normal mixture model and the Guilt-By-Association score of the gene network in a naïve Bayes framework, has the power to discover moderate/weak selection gene which bridges the genes under strong selection and it helps our understanding the biology under complex diseases and related natural selection phenotypes.^