18 resultados para Heterodimer
em DigitalCommons@The Texas Medical Center
Resumo:
Type IV secretion (T4S) systems translocate DNA and protein effectors through the double membrane of Gram-negative bacteria. The paradigmatic T4S system in Agrobacterium tumefaciens is assembled from 11 VirB subunits and VirD4. Two subunits, VirB9 and VirB7, form an important stabilizing complex in the outer membrane. We describe here the NMR structure of a complex between the C-terminal domain of the VirB9 homolog TraO (TraO(CT)), bound to VirB7-like TraN from plasmid pKM101. TraO(CT) forms a beta-sandwich around which TraN winds. Structure-based mutations in VirB7 and VirB9 of A. tumefaciens show that the heterodimer interface is conserved. Opposite this interface, the TraO structure shows a protruding three-stranded beta-appendage, and here, we supply evidence that the corresponding region of VirB9 of A. tumefaciens inserts in the membrane and protrudes extracellularly. This complex structure elucidates the molecular basis for the interaction between two essential components of a T4S system.
Resumo:
Monocyte developmental heterogeneity is reflected at the cellular level by differential activation competence, at the molecular level by differential regulation of gene expression. LPS activates monocytes to produce tumor necrosis factor-$\alpha$ (TNF). Events occurring at the molecular level necessary for TNF regulation have not been elucidated, but depend both on activation signals and the maturation state of the cell: Peripheral blood monocytes produce TNF upon LPS stimulation, but only within the first 72 hours of culture. Expression of c-fos is associated with monocytic differentiation and activation; the fos-associated protein, c-jun, is also expressed during monocyte activation. Increased cAMP levels are associated with down regulation of macrophage function, including LPS-induced TNF transcription. Due to these associations, we studied a region of the TNF promoter which resembles the binding sites for both AP-1(fos/jun) and CRE-binding protein (or ATF) in order to identify potential molecular markers defining activation competent populations of monocytic cells.^ Nuclear protein binding studies using extracts from THP-1 monocytic cells stimulated with LPS, which stimulates, or dexamethasone (Dex) or pentoxyfilline (PTX), which inhibit TNF production, respectively, suggest that a low mobility doublet complex may be involved in regulation through this promoter region. PTX or Dex increase binding of these complexes equivalently over untreated cells; approximately two hours after LPS induction, the upper complex is undetectable. The upper complex is composed of ATF2 (CRE-BP1); the lower is a heterodimer of jun/ATF2. LPS induces c-jun and thus may enhance formation of jun-ATF2 complexes. The simultaneous presence of both complexes may reduce the amount of TNF transcription through competitive binding, while a loss of the upper (ATF2) and/or gain of the lower (jun-ATF2) allow increased transcription. AP-1 elements generally transduce signals involving PKC; the CRE mediates a cAMP response, involving PKA. Thus, this element has the potential of receiving signals through divergent signalling pathways. Our findings also suggest that cAMP-induced inhibition of macrophage functions may occur via down regulation of activation-associated genes through competitive binding of particular cAMP-responsive nuclear protein complexes. ^
Resumo:
The integrin receptor $\alpha 4\beta 1$ is a cell surface heterodimer involved in a variety of highly regulated cellular interactions. The purpose of this dissertation was to identify and characterize unique structural and functional properties of the $\alpha 4\beta 1$ molecule that may be important for adhesion regulation and signal transduction. To study these properties and to establish a consensus sequence for the $\alpha 4$ subunit, cDNA encoding $\alpha 4$ was cloned and sequenced. A comparison with previously described human $\alpha 4$ sequences identified several substitutions in the $5\prime$ and $3\prime$ untranslated regions, and a nonsynonymous G to A transition in the coding region, resulting in a glutamine substitution for arginine. Further analysis of this single nucleotide substitution indicated that two variants of the $\alpha 4$ subunit exist, and when compared with three ancestrally-related species, the new form cloned in our laboratory was found to be evolutionarily conserved.^ The expression of $\alpha 4$ cDNA in transfected K562 erythroleukemia cells, and subsequent studies using flow cytofluorometric, immunochemical, and ligand binding/blocking analyses, confirmed $\alpha 4\beta 1$ as a receptor for fibronectin (FN) and vascular cell adhesion molecule-1 (VCAM-1), and provided a practical means of identifying two novel monoclonal antibody (mAb) binding epitopes on the $\alpha 4\beta 1$ complex that may play important roles in the regulation of leukocyte adhesion.^ To investigate the association of $\alpha 4\beta 1$-mediated adhesion with signals involved in the spreading of lymphocytes on FN, a quantitative method of analysis was developed using video microscopy and digital imaging. The results showed that HPB-ALL $(\alpha 4\beta 1\sp{\rm hi},\ \alpha 5\beta 1\sp-)$ cells could adhere and actively spread on human plasma FN, but not on control substrate. Many cell types which express different levels of the $\alpha 4\beta 1$ and $\alpha 5\beta 1$ FN binding integrins were examined for their ability to function in these events. Using anti-$\alpha 4$ and anti-$\alpha 5$ mAbs, it was determined that cell adhesion to FN was influenced by both $\beta 1$ integrins, while cell spreading was found to be dependent on the $\alpha 4\beta 1$ complex. In addition, inhibitors of phospholipase A$\sb2$ (PLA$\sb2$), 5-lipoxygenases, and cyclooxygenases blocked HPB-ALL cell spreading, yet had no effect on cell adhesion to FN, and the impaired spreading induced by the PLA$\sb2$ inhibitor cibacron blue was restored by the addition of exogenous arachidonic acid (AA). These results suggest that the interaction of $\alpha 4\beta 1$ with FN, the activation of PLA$\sb2,$ and the subsequent release of AA, may be involved in lymphocyte spreading. ^
Resumo:
A means of analyzing protein quaternary structure using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI MS) and chemical crosslinking was evaluated. Proteins of known oligomeric structure, as well as monomeric proteins, were analyzed to evaluate the method. The quaternary structure of proteins of unknown or uncertain structure was investigated using this technique. The stoichiometry of recombinant E. coli carbamoyl phosphate synthetase and recombinant human farnesyl protein transferase were determined to be heterodimers using glutaraldehyde crosslinking, agreeing with the stoichiometry found for the wild type proteins. The stoichiometry of the gamma subunit of E. coli DNA polymerase III holoenzyme was determined in solution without the presence of other subunits to be a homotetramer using glutaraldehyde crosslinking and MALDI MS analysis. Chi and psi subunits of E. coli DNA polymerase III subunits appeared to form a heterodimer when crosslinked with heterobifunctional photoreactive crosslinkers.^ Comparison of relative % peak areas obtained from MALDI MS analysis of crosslinked proteins and densitometric scanning of silver stained sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gels showed excellent qualitative agreement for the two techniques, but the quantitative analyses differed, sometimes significantly. This difference in quantitation could be due to SDS-PAGE conditions (differential staining, loss of sample) or to MALDI MS conditions (differences in ionization and/or detection). Investigation of pre-purified crosslinked monomers and dimers recombined in a specific ratio revealed the presence of mass discrimination in the MALDI MS process. The calculation of mass discrimination for two different MALDI time-of-flight instruments showed the loss of a factor of approximately 2.6 in relative peak area as the m/z value doubles over the m/z range from 30,000 to 145,000 daltons.^ Indirect symmetry was determined for tetramers using glutaraldehyde crosslinking with MALDI MS analysis. Mathematical modelling and simple graphing allowed the determination of the symmetry for several tetramers known to possess isologous D2 symmetry. These methods also distinguished tetramers that did not fit D2 symmetry such as apo-avidin. The gamma tetramer of E. coli DNA polymerase III appears to have isologous D2 symmetry. ^
Resumo:
RecA in Escherichia coli and it's homologue, ScRad51 in Saccharomyces cerevisiae, play important roles in recombinational repair. ScRad51 homologues have been discovered in a wide range of organisms including Schizosaccharomyces pombe, lily, chicken, mouse and human. To date there is no direct evidence to describe that mouse Rad51(MmRad51) is involved in DNA double-strand break repair. In order to elucidate the role of MmRad51 in vivo, it was mutated by the embryonic stem (ES) cell/gene targeting technology in mice. The mutant embryos arrested in development shortly after implantation. There was a decrease in cell proliferation followed by programmed cell death, and trophectoderm-derived cells were sensitive to $\gamma$-radiation. Severe chromosome loss was observed in most mitotically dividing cells. The mutant embryos lived longer and developed further in a p53 mutant background; however, double-mutant embryonic fibroblasts failed to proliferate in tissue culture, reflecting the embryos limited life span. Based on these data, MmRad51 repairs DNA damage induced by $\gamma$-radiation, is needed to maintain euplody, and plays an important role in proliferating cells.^ Ku is a heterodimer of 70 and 80 kDs subunit, which binds to DNA ends and other altered DNA structures such as hairpins, nicks, and gaps. In addition, Ku is required for DNA-PK activity through a direct association. Although the biochemical properties of Ku and DNA-PKcs have been characterized in cells, their physiological functions are not clear. In order to understand the function of Ku in vivo, we generated mice homozygous for a mutation of the Ku80 gene. Ku80-deficient mice, like scid mice, showed severe immunodeficiency due to a impairment of V(D)J recombination. Mutant mice were semiviable and runted, cells derived from mutant embryos displayed hypersensitivity to $\gamma$-radiation, a decreased growth rate, a slow entry into S phase, altered colony size distributions, and a short life span. Based on these results, mutant cells and mice appeared to prematurely age. ^
Resumo:
Alpha and beta tubulin are essential proteins in all eukaryotic cells. To study how cells maintain coordinate levels of these two interacting proteins, we have used PCR to add a 9 amino acid epitope from influenza hemagglutinin protein onto the carboxyl terminus of $\alpha$1 and $\beta$1-tubulin. The chimeric tubulin genes (HA$\alpha$1 and HA$\beta$1) were transfected into CHO cells and cell lines that stably express each gene were selected. Cells transfected with HA-tubulin do not exhibit any gross changes in growth or morphology. Immunofluorescence analysis demonstrated that HA-tubulins incorporate into both cytoplasmic and spindle microtubules. A quantitative biochemical assay was used to show that HA-tubulins incorporate into microtubules to a normal extent and do not alter the steady state distribution of endogenous tubulin between monomer and polymer pools. Two-dimensional gel analysis of pulse-labeled cells indicated that when HA$\beta$1-tubulin is expressed at high levels, it slightly represses the synthesis of the endogenous $\beta$-tubulin but produces a small increase in the synthesis of $\alpha$-tubulin. Analysis of cells labeled to steady state showed that HA$\beta$1-tubulin accumulates to a similar level as the wild-type gene product, but together these polypeptides produce only a small increase in total tubulin content consistent with the increased synthesis of $\alpha$-tubulin. It thus appears that HA$\beta$1-tubulin successfully competes with endogenous $\beta$-tubulin for heterodimer formation and that free $\beta$-tubulin subunits (endogenous and HA$\beta$1) are selectively degraded to maintain coordinate amounts of $\alpha$- and $\beta$-tubulin. In addition, the increased synthesis of $\alpha$-tubulin suggested the existence of a mechanism to ensure coordinate synthesis of $\alpha$- and $\beta$-tubulin subunits. To analyze whether reciprocal changes in endogenous tubulin synthesis occur when $\alpha$-tubulin is overexpressed, stably transfected CHO cell lines were isolated in which HA$\alpha$1-tubulin represents 50% of the total $\alpha$-tubulin, and its relative abundance can be further increased to 85-90% by treatment with sodium butyrate. In contrast with results obtained using HA$\beta$1-tubulin, transfection of HA$\alpha$1-tubulin decreased the synthesis of endogenous $\alpha$-tubulin to 60% of normal with little or no change in $\beta$-tubulin synthesis. When the transfected cells were treated with sodium butyrate to further increase HA$\beta$1-tubulin production, a larger decrease in the synthesis of endogenous $\alpha$-tubulin (to 30% of normal) was observed. The repression on the synthesis of endogenous $\alpha$-tubulin polypeptide was found to be directly proportional to the expression of HA$\alpha$1-tubulin indicating the existence of an autoregulatory loop, where $\alpha$-tubulin inhibits its own synthesis. To determine whether overproduction of HA$\alpha$1-tubulin affected the transcription, message stability or translation of endogenous $\alpha$-tubulin, the steady state levels of $\alpha$-tubulin mRNA were analyzed by ribonuclease protection assays. The results showed that the steady state level of $\alpha$-tubulin mRNA is not affected by the overexpression of HA$\alpha$1-tubulin, indicating that the repression is translational. The results are compatible with a model in which $\beta$-tubulin synthesis is largely unperturbed by overexpression of other tubulin subunits, and excess $\beta$-tubulin subunits are rapidly degraded to maintain coordinate $\alpha$- and $\beta$-tubulin levels at steady state. In contrast, free $\alpha$-tubulin represses its own synthesis at the translational level, suggesting that its level of production may be controlled by the amount of $\beta$-tubulin available for heterodimer formation. ^
Resumo:
mRNA 3′ polyadenylation is central to mRNA biogenesis in prokaryotes and eukaryotes, and is implicated in numerous aspects of mRNA metabolism, including efficiency of mRNA export from the nucleus, message stability, and initiation of translation. However, due to the great complexity of the eukaryotic polyadenylation apparatus, the mechanisms of RNA 3 ′ end processing have remained elusive. Although the RNA processing reactions leading to polyadenylated messenger RNA have been studied in many systems, and much progress has been made, a complete understanding of the biochemistry of the poly(A) polymerase enzyme is still lacking. My research uses Vaccinia virus as a model system to gain a better understanding of this complicated polyadenylation process, which consist of RNA binding, catalysis and polymerase translocation. ^ Vaccinia virus replicates in the cytoplasm of its host cell, so it must employ its own poly(A) polymerase (PAP), a heterodimer of two virus encoded proteins, VP55 and VP39. VP55 is the catalytic subunit, adding 30 adenylates to a non-polyadenylated RNA in a rapid processive manner before abruptly changing to a slow, non-processive mode of adenylate addition and dissociating from the RNA. VP39 is the stimulatory subunit. It has no polyadenylation catalytic activity by itself, but when associated with VP55 it facilitates the semi-processive synthesis of tails several hundred adenylates in length. ^ Oligonucleotide selection and competition studies have shown that the heterodimer binds a minimal motif of (rU)2 (N)25 U, the “heterodimer binding motif”, within an oligonucleotide, and its primer selection for polyadenylation is base-type specific. ^ Crosslinking studies using photosensitive uridylate analogs show that within a VP55-VP39-primer ternary complex, VP55 comes into contact with all three required uridylates, while VP39 only contacts the downstream uridylate. Further studies, using a backbone-anchored photosensitive crosslinker show that both PAP subunits are in close proximity to the downstream −10 to −21 region of 50mer model primers containing the heterodimer binding motif. This equal crosslinking to both subunits suggests that the dimerization of VP55 and VP39 creates either a cleft or a channel between the two subunits through which this region of RNA passes. ^ Peptide mapping studies of VP39 covalently crosslinked to the oligonucleotide have identified residue R107 as the amino acid in close proximity to the −10 uridylate. This helps us project a conceptual model onto the known physical surface of this subunit. In the absence of any tertiary structural data for VP55, we have used a series of oligonucleotide selection assays, as well as crosslinking, nucleotide transfer assays, and gel shift assays to gain insight into the requirements for binding, polyadenylation and translocation. Collectively, these data allow us to put together a comprehensive model of the structure and function of the polyadenylation ternary complex consisting of VP39, VP55 and RNA. ^
Resumo:
Phosphatidylinositol 3-kinase (PI3K) generates membrane phospholipids that serve as second messengers to recruit signaling proteins to plasma membrane consequently regulating cell growth and survival. PI3K is a heterodimer consisting of a catalytic p110 subunit and a regulatory p85 subunit. Association of the p85 with other signal proteins is critical for induced PI3K activation. Activated PI3K, in turn, leads to signal flows through a variety of PI3K effectors including PDK1, AKT, GSK3, BAD, p70 S6K and NFκB. The PI3K pathway is under regulation by multiple signal proteins representing cross-talk between different signaling cascades. In this study, we have evaluated the role of protein kinase C family kinases on signaling through PI3K at multiple levels. Firstly, we observed that the action of PKC specific inhibitors like Ro-31-8220 and GF109203X was associated with an increased AKT phosphorylation and activity, suggesting that PKC kinases might play a negative role in the regulation of PI3K pathway. Then, we demonstrated the stimulation of AKT by PKC inhibition was dependent on functional PI3K enzyme and able to be transmitted to the AKT effector p70 S6K. Furthermore, we showed an inducible physical association between the PKCζ isotype and AKT, which was accompanied by an attenuated AKT activity. However, a kinase-dead form of PKC failed to affect AKT. In the second part of our research we revealed the ability of a different PKC family member, PKCδ to bind to the p85 subunit of PI3K in response to oxidative stress, a process requiring the activity of src tyrosine kinases. The interaction was demonstrated to be a direct and specific contact between the carboxyl terminal SH2 domain of p85 and tyrosine phosphorylated PKCδ. Several different types of agonists were capable to induce this association including tyrosine kinases and phorbol esters with PKCδ tyrosine phosphorylation being integral components. Finally, the PKCδ-PI3K complex was related to a reduction in the AKT phosphorylation induced by src. A kinase-deficient mutant of PKCδ was equally able to inhibit AKT signal as the wild type, indicative of a process independent of PKCδ catalytic activity. Altogether, our data illustrate different PKC isoforms regulating PI3K pathway at multiple levels, suggesting a mechanism to control signal flows through PI3K for normal cell activities. Although further investigation is required for full understanding of the regulatory mechanism, we propose that complex formation of signal proteins in PI3K pathway and specific PKC isoforms plays important role in their functional linkage. ^
Resumo:
The formation of the placenta is one of the first and most important developmental events that occur in early mammalian embryogenesis. Even given this importance of the placenta, the academic community has largely ignored studying gene regulation during the development and maturation of the placenta. For this reason, an in-depth study of gene regulation in the trophoblast layer of the placenta using murine Adenosine Deaminase (Ada) as a model system has been undertaken. It has been determined that Ada is highly expressed in the placenta and is critical for embryo development. Dr. Kellems' laboratory has previously described a 1.8 kb fragment of the Ada 5 ′ flanking region that is capable of directing trophoblast specific expression in a transgenic model system. Preliminary studies have demonstrated several critical portions of this fragment that are necessary for the correct tissue specific expression in the placenta. My first specific aim was to elucidate the trans factor binding to one of these sequences, the FP3. Through electromobility shift assays (EMSA), the 30 bp FP3 was narrowed to a 5 bp sequence which computer databases predicted bound to Acute Myeloid Leukemia 1 (AML-1). This was confirmed by supershift analysis. The functional importance of this binding was demonstrated by a transgenic approach. A significant difference in expression of the reporter in the placenta was seen when the 5 bp sequence was mutated. This finding is a novel use for the AML-1 transcription factor which is the DNA binding portion of the heterodimer Core Binding Protein (CBP). The 5′ 240 bp region has also been demonstrated to contain functionally significant sequence. Through EMSA assays and computer predictions, the area has been narrowed to two pertinent regions that are predicted to contain GATA binding motifs. ^
Resumo:
The DNA repair gene, XPF, is implicated in numerous processes relating to maintenance of genomic stability. The experiments presented herein were designed to investigate the role of XPF in homologous recombination processes. Specifically, the role of XPF in plasmid-chromosome and intrachromosomal recombination was evaluated. To interrogate the mechanistic role of XPF in plasmid-chromosome recombination, a homologous gene targeting system at the APRT locus in Chinese Hamster Ovary (CHO) cells was used. The targeting vector is linearized within 900 base pairs of heterology, which generates a substrate with long, nonhomologous 3′-OH ends that must be efficiently processed, presumably by the Xpf/Ercc1 heterodimer, prior to a productive recombination event. These experiments demonstrated a significant decrease in the targeted gene recombination frequency and a significant change to the recombinant product distributions in XPF- and ERCC1-deficient CHO cell lines, which suggest that the Xpf/Ercc1 heterodimer is essential for strand invasion recombination involving the processing of long, nonhomologous tails. In order to evaluate the role of XPF in intrachromosomal recombination, direct APRT repeat constructs at the chromosomal APRT locus in XPF-proficient and XPF-deficient CHO cells were used in spontaneous and DSB-induced recombination experiments. A defect in intrachromosomal recombination was only shown for UV41-derived XPF -deficient CHO cells, which have a severe interstrand crosslinking phenotype. The results of these studies demonstrate a requirement for XPF function in both plasmid-chromosome and intrachromosomal recombination, specifically in removal of long, single-stranded 3′-OH DNA ends. In addition, these studies identified a correlation between the interstrand cross-linking phenotype and the intrachromosomal recombination phenotype of each CHO cell line, but did not demonstrate a correlation between the interstrand cross-linking phenotype and the plasmid-chromosome recombination phenotype of these CHO cell lines. ^
Resumo:
T cell activation requires antigen-specific T cell receptor signals that spatially and temporally coincide with a second costimulatory signal. CD28 and α4β1 integrin both function as T cell costimulators, but their individual mechanisms remain elusive. By directly comparing CD3-dependent functions and signaling pathways employed by these two costimulatory receptors, aspects of their individual signaling mechanisms are explored. We determined that CD28 and α4β1 integrins both use Src-family kinase Lck and MAPK Erk, but to different extents and functional ends. After identifying functional differences between CD28 and integrin costimulatory pathways, the focus of the study turned to integrin signaling in naïve and memory T cell subsets. CD45RO T cells are fully co-activated by natural β1 integrin ligands fibronectin (FN) and VCAM-1, β1 monoclonal antibody 33B6, as well as α4β1 monoclonal antibody 19H8 which binds a combinatorial epitope of the α4β1 heterodimer. While CD28 fully costimulates CD45RA T cells, the degree of activation from integrin ligands varies. FN costimulates CD3-dependent proliferation, IL-2 secretion, and early activation markers CD25 and CD69. However, β1 antibody 33B6, which binds to the same T cell integrins (α4β1 and α5β1) as natural ligand FN, failed to costimulate proliferation or IL-2 in the CD45RA subset, but retained the ability to regulate CD25 and CD69. Unique aspects of 19H8 signaling involve early Erk activation and IL-2 independent proliferation. Signaling defects through 33B6 ligation correlates with poor adhesion under fluid flow conditions, suggesting a cytoskeletal basis for signaling. All together, these data provide evidence for a mechanism of α4β1 integrin signaling and describe functional differences between naïve and memory T cells. ^
Resumo:
Chronic exposure of the airways to cigarette smoke induces inflammatory response and genomic instability that play important roles in lung cancer development. Nuclear factor kappa B (NF-κB), the major intracellular mediator of inflammatory signals, is frequently activated in preneoplastic and malignant lung lesions. ^ Previously, we had shown that a lung tumor suppressor GPRC5A is frequently repressed in human non-small cell lung cancers (NSCLC) cells and lung tumor specimens. Recently, other groups have shown that human GPRC5A transcript levels are higher in bronchial samples of former than of current smokers. These results suggested that smoking represses GPRC5A expression and thus promotes the occurrence of lung cancer. We hypothesized that cigarette smoking or associated inflammatory response repressed GPRC5A expression through NF-κB signaling. ^ To determine the effect of inflammation, we examined GPRC5A protein expression in several lung cell lines following by TNF-α treatment. TNF-α significantly suppressed GPRC5A expression in normal small airway epithelial cells (SAEC) as well as in Calu-1 cells. Real-time PCR analysis indicated that TNF-α inhibits GPRC5A expression at the transcriptional level. NF-κB, the major downstream effectors of TNF-α signaling, mediates TNF-α-induced repression of GPRC5A because over-expression of NF-κB suppressed GPRC5A. To determine the region in the GPRC5A promoter through which NF-κB acts, we examined the ability of TNF-α to inhibit a series of reporter constructs with different deletions of GPRC5A promoter. The luciferase assay showed that the potential NF-κB binding sites containing region are irresponsible for TNF-α-induced suppression. Further analysis using constructs with different deletions in p65 revealed that NF-κB-mediated repression of GPRC5A is transcription-independent. Co-immunoprecipitation assays revealed that NF-κB could form a complex with RAR/RXR heterodimer. Moreover, the inhibitory effect of NF-κB has been found to be proportional to NF-κB/RAR ratio in luciferase assay. Finally, Chromatin IP demonstrated that NF-κB/p65 bound to GPRC5A promoter as well as RAR/RXR and suppressed transcription. Taken together, we propose that inflammation-induced NF-κB activation disrupts the RA signaling and suppresses GPRC5A expression and thus contributes to the oncogenesis of lung cancer. Our studies shed new light on the pathogenesis of lung cancer and potentially provide novel interventions for preventing and treating this disease. ^
Resumo:
Allergen-induced asthma is the leading form of asthma and a chronic condition worldwide. Common allergens are known to contribute to the pathogenesis of this disease. Murine models of allergic asthma have mostly used an intraperitoneal route of sensitization (not airway) to study this disease. Allergic asthma pathophysiology involves the activation of TH2-specific cells, which triggers production of IgE antibodies, the up-regulation of TH2-specific cytokines (i.e. IL-4, IL-5, IL-9 and IL-13), increased airway eosinophilia, and mucin hypersecretion. Although there are several therapeutics currently treating asthmatic patients, some of these treatments can result in drug tolerance and may be linked to increased mortality. CpG oligodeoxynucleotides (ODNs) is a synthetic ligand that targets Toll-like Receptor (TLR) 9. It has been evaluated as a therapeutic agent for the treatment of cancer, infectious diseases, and for treating allergy and asthma. PUL-042 is also a synthetic TLR ligand and is composed of two agonists against TLR2/6 heterodimer and TLR9. Previous studies have evaluated PUL-042 for its ability to confer resistance against bacterial and viral lung infection. These findings, combined with studies performed using CpG ODNs, led to speculation that PUL-042 dampens the immune response in allergen-induced asthma. My thesis research investigated airway route sensitization and airway delivery of PUL-042 to evaluate its effects in reducing an allergen-induced asthma phenotype in a murine model. The results of this study contribute to the foundation for future investigations to evaluate the efficacy of PUL-042 as a novel therapy in allergic-asthma disease.
Resumo:
ts1 is a neurovirulent spontaneous temperature-sensitive mutant of Moloney murine leukemia virus TB (MoMuLV-TB). MoMuLV-TB causes T-cell lymphoma or lymphoid leukemia in mice after a long latency period whereas ts1 causes a progressive hindlimb paralytic disease after a much shorter latency period. In previous studies, it had been shown that the temperature-sensitive defect resided in the $env$ gene. At the restrictive temperature, the envelope precursor polyprotein, gPr80$\sp{env}$, is inefficiently processed intracellularly into a heterodimer consisting of two cleavage products, gp70 and Prp15E. This inefficient processing is correlated with neurovirulence. In this study, the nucleotide sequences of the env genes for both ts1 and MoMuLV-TB were determined, and the encoded amino acid sequences were deduced from the DNA sequences. There were four unique amino acid substitutions in the gPr80$\sp{env}$ of ts1. In order to determine which unique amino acid was responsible for the phenotypic characteristics of ts1, a set of hybrid genomes was constructed by exchanging restriction fragments between ts1 and MoMuLV-TB. NIH 3T3 cells were transfected with the hybrid genomes to obtain infectious hybrid viruses. Assays of the hybrid viruses showed that a Val-25$\to$Ile substitution in gPr80$\sp{env}$ was responsible for the temperature sensitivity, inefficient processing, and neurovirulence of ts1. In further studies, the Ile-25 in gPr80$\sp{env}$ was substituted with Thr, Ala, Leu, Gly, and Glu by site-directed mutagenesis to generate a new set of mutant viruses, i.e., ts1-T, -A, -L, -G, and -E, respectively. The rank order of the mutants for temperature sensitivity was: ts1-E $>$ ts1-G $>$ ts1-L $>$ ts1-A $>$ ts1 $>$ ts1-T. The degree of temperature sensitivity of each of the mutants also correlated with the degree of inefficient processing of gPr80$\sp{env}$. The mutant viruses were assayed for neurovirulence. ts1-T caused whole body tremor, ts1-A caused hindlimb paralysis, ts1-L caused paraparesis, but ts1-G and -E were not neurovirulent. These results show that inefficient processing of gPr80$\sp{env}$ is correlated with neurovirulence, but if processing of gPr80$\sp{env}$ is too inefficient there is no neurovirulence. Furthermore, the disease profile of each of the neurovirulent viruses depends on the degree of inefficient processing of gPr80$\sp{env}$. ^
Resumo:
p53 is a tumor suppressor gene that is the most frequent target inactivated in cancers. Overexpression of wild-type p53 in rat embryo fibroblasts suppresses foci formation by other cooperating oncogenes. Introduction of wild-type p53 into cells that lack p53 arrests them at the G1/S boundary and reverses the transformed phenotype of some cells. The function of p53 in normal cells is illustrated by the ability of p53 to arrest cells at G1 phase of the cell cycle upon exposure to DNA-damaging agents including UV-irradiation and biosynthesis inhibitors.^ Since the amino acid sequence of p53 suggested that it may function as a transcription factor, we used GAL4 fusion assays to test that possibility. We found that wild-type p53 could specifically activate transcription when anchored by the GAL4 DNA binding domain. Mutant p53s, which have lost the ability to suppress foci formation by other oncogenes, were not able to activate transcription in this assay. Thus, we established a direct correlation between the tumor suppression and transactivation functions of p53.^ Having learned that p53 was a transcriptional activator, we next sought targets of p53 activation. Because many transcription factors regulate their own expression, we tested whether p53 had this autoregulatory property. Transient expression of wild-type p53 in cells increased the levels of endogenous p53 mRNA. Cotransfection of p53 together with a reporter bearing the p53 promoter confirmed that wild-type p53 specifically activates its own promoter. Deletion analysis from both the 5$\sp\prime$ and 3$\sp\prime$ ends of the promoter minimized the region responsible for p53 autoregulation to 45 bp. Methylation interference identified nucleotides involved in protein-DNA interaction. Mutations within this protected site specifically eliminated the response of the promoter to p53. In addition, multiple copies of this element confer responsiveness to wild-type p53 expression. Thus, we identified a F53 responsive element within the p53 promoter.^ The presence of a consensus NF-$\kappa$B site in the p53 promoter suggested that NF-KB may regulate p53 expression. Gel-shift experiments showed that both the p50 homodimer and the p50/p65 heterodimer bind to the p53 promoter. In addition, the p65 subunit of NF-$\kappa$B activates the p53 promoter in transient transfection experiments. TNF $\alpha$, a natural NF-$\kappa$B inducer, also activates the p53 promoter. Both p65 activation and TNF $\alpha$ induction require an intact NF-$\kappa$B site in the p53 promoter. Since NF-$\kappa$B activation occurs as a response to stress and p53 arrests cells in G1/S, where DNA repair occurs, activation of p53 by NF-$\kappa$B could be a mechanism by which cells recover from stress.^ In conclusion, we provided the first data that wild-type p53 functions as a transcriptional activator, whereas mutant p53 cannot. The correlation between growth suppression and transcriptional activation by p53 implies a pathway of tumor suppression. We have analyzed upstream components of the pathway by the identification of both p53 and NF-$\kappa$B as regulators of the p53 promoter. ^