2 resultados para Hetero-olettamuksesta moninaisuuteen

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, a family of muscle-specific regulatory factors that includes myogenin, myoD, myf-5, and MRF-4 has been identified. They share a high degree of homology within a region that contains a basic and helix-loop-helix domain. Transfection of many non-muscle cell types with any one of these genes results in the activation of the entire myogenic program. To explore the mechanism through which myogenin regulates myogenesis, we have prepared antibodies against peptides specific to myogenin. Using these antibodies we show that myogenin is a 32 Kd phospho-protein which is localized to the nuclei of muscle cells. In vitro, myogenin oligomerizes with the ubiquitous enhancer binding factor E12, and acquires high affinity for an element of the core of the muscle creatine kinase (MCK) enhancer that is conserved among many muscle-specific genes. Myogenin synthesized in BC$\sb3$H1 and C2 muscle cell lines also binds to the same site in the enhancer. However, the MCK enhancer is not activated in 10T1/2 fibroblasts which have been transfected with a constitutive myogenin expression vector until growth factors have been removed from the media. This result indicates that mitogenic signals block the actions of myogenin.. Mutagenesis of the myogenin/E12 binding site in the MCK enhancer abolishes binding of the hetero-oligomer and prevents trans-activation of the enhancer by myogenin. By site directed mutagenesis of myogenin we have shown that the basic region consists of three clusters of basic residues, two of which are required for binding and activation of the myogenic program. Myogenic activation, but not DNA binding, is lost when the 10 residue region between the two required basic clusters is substituted with the corresponding region from E12, which also contains a similar basic and helix-loop-helix domain. Functional revertants of this substitution mutant have identified two amino acids which confer muscle specificity. The properties of myogenin suggest that it functions as a sequence-specific DNA binding factor that interacts directly with muscle-specific genes during myogenesis and contains within its basic domain a region which imparts myogenic activation and is separable from DNA binding. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transcription factors often determine cell fate and tissue development. Chondrogenesis is the developmental process by which cartilages form. Recently, gene targeting studies have shown that two transcription factors, L-Sox5 and Sox6, play essential and redundant roles in chondrogenesis in vivo by converting precartilaginous cell condensations into cartilages. Both are highly similar High-Mobility-Group (HMG)-domain proteins that bind and subsequently bend DNA containing the 7bp HMG site (A/T)(A/T)CAA(A/T)G. They have no transactivation domain, but homo- and hetero-dimerize and preferentially bind DNA containing two HMG sites. They are thought to play an architectural role in transactivation by facilitating long-range DNA and protein interactions. To understand their molecular mechanism of action, we investigated how phasing, orientation, and spacing between HMG sites affect L-Sox5 and Sox6 DNA-binding. We determined that L-Sox5 and Sox6 dimers bind with high affinity to paired HMG sites in DNA rather than a single HMG site. Binding of paired sites is independent of DNA helical phasing, orientation of paired HMG sites and independent of distance up to 255 base pairs between sites. Mutational analysis demonstrated that binding of L-Sox5 and Sox6, independent of orientation of the sites, is critically dependent on the presence of paired HMG sites rather than one HMG site alone. Our data support a unique and novel model whereby L-Sox5 and Sox6 dimerize and bind DNA with pronounced spatial flexibility, possibly by a flexible hinge, and act as architectural transcription factors that bring distant DNA sites and proteins together to form higher order transcriptional complexes that are essential for the activation of their target genes in chondrogenesis. ^