3 resultados para Herz-Type Hardy Spaces
em DigitalCommons@The Texas Medical Center
Resumo:
Geographic health planning analyses, such as service area calculations, are hampered by a lack of patient-specific geographic data. Using the limited patient address information in patient management systems, planners analyze patient origin based on home address. But activity space research done sparingly in public health and extensively in non-health related arenas uses multiple addresses per person when analyzing accessibility. Also, health care access research has shown that there are many non-geographic factors that influence choice of provider. Most planning methods, however, overlook non-geographic factors influencing choice of provider, and the limited data mean the analyses can only be related to home address. This research attempted to determine to what extent geography plays a part in patient choice of provider and to determine if activity space data can be used to calculate service areas for primary care providers. During Spring 2008, a convenience sample of 384 patients of a locally-funded Community Health Center in Houston, Texas, completed a survey that asked about what factors are important when he or she selects a health care provider. A subset of this group (336) also completed an activity space log that captured location and time data on the places where the patient regularly goes. Survey results indicate that for this patient population, geography plays a role in their choice of health care provider, but it is not the most important reason for choosing a provider. Other factors for choosing a health care provider such as the provider offering “free or low cost visits”, meeting “all of the patient’s health care needs”, and seeing “the patient quickly” were all ranked higher than geographic reasons. Analysis of the patient activity locations shows that activity spaces can be used to create service areas for a single primary care provider. Weighted activity-space-based service areas have the potential to include more patients in the service area since more than one location per patient is used. Further analysis of the logs shows that a reduced set of locations by time and type could be used for this methodology, facilitating ongoing data collection for activity-space-based planning efforts.
Resumo:
Several studies have examined the association between high glycemic index (GI) and glycemic load (GL) diets and the risk for coronary heart disease (CHD). However, most of these studies were conducted primarily on white populations. The primary aim of this study was to examine whether high GI and GL diets are associated with increased risk for developing CHD in whites and African Americans, non-diabetics and diabetics, and within stratifications of body mass index (BMI) and hypertension (HTN). Baseline and 17-year follow-up data from ARIC (Atherosclerosis Risk in Communities) study was used. The study population (13,051) consisted of 74% whites, 26% African Americans, 89% non-diabetics, 11% diabetics, 43% male, 57% female aged 44 to 66 years at baseline. Data from the ARIC food frequency questionnaire at baseline were analyzed to provide GI and GL indices for each subject. Increases of 25 and 30 units for GI and GL respectively were used to describe relationships on incident CHD risk. Adjusted hazard ratios for propensity score with 95% confidence intervals (CI) were used to assess associations. During 17 years of follow-up (1987 to 2004), 1,683 cases of CHD was recorded. Glycemic index was associated with 2.12 fold (95% CI: 1.05, 4.30) increased incident CHD risk for all African Americans and GL was associated with 1.14 fold (95% CI: 1.04, 1.25) increased CHD risk for all whites. In addition, GL was also an important CHD risk factor for white non-diabetics (HR=1.59; 95% CI: 1.33, 1.90). Furthermore, within stratum of BMI 23.0 to 29.9 in non-diabetics, GI was associated with an increased hazard ratio of 11.99 (95% CI: 2.31, 62.18) for CHD in African Americans, and GL was associated with 1.23 fold (1.08, 1.39) increased CHD risk in whites. Body mass index modified the effect of GI and GL on CHD risk in all whites and white non-diabetics. For HTN, both systolic blood pressure and diastolic blood pressure modified the effect on GI and GL on CHD risk in all whites and African Americans, white and African American non-diabetics, and white diabetics. Further studies should examine other factors that could influence the effects of GI and GL on CHD risk, including dietary factors, physical activity, and diet-gene interactions. ^
Resumo:
Geographic health planning analyses, such as service area calculations, are hampered by a lack of patient-specific geographic data. Using the limited patient address information in patient management systems, planners analyze patient origin based on home address. But activity space research done sparingly in public health and extensively in non-health related arenas uses multiple addresses per person when analyzing accessibility. Also, health care access research has shown that there are many non-geographic factors that influence choice of provider. Most planning methods, however, overlook non-geographic factors influencing choice of provider, and the limited data mean the analyses can only be related to home address. This research attempted to determine to what extent geography plays a part in patient choice of provider and to determine if activity space data can be used to calculate service areas for primary care providers. ^ During Spring 2008, a convenience sample of 384 patients of a locally-funded Community Health Center in Houston, Texas, completed a survey that asked about what factors are important when he or she selects a health care provider. A subset of this group (336) also completed an activity space log that captured location and time data on the places where the patient regularly goes. ^ Survey results indicate that for this patient population, geography plays a role in their choice of health care provider, but it is not the most important reason for choosing a provider. Other factors for choosing a health care provider such as the provider offering "free or low cost visits", meeting "all of the patient's health care needs", and seeing "the patient quickly" were all ranked higher than geographic reasons. ^ Analysis of the patient activity locations shows that activity spaces can be used to create service areas for a single primary care provider. Weighted activity-space-based service areas have the potential to include more patients in the service area since more than one location per patient is used. Further analysis of the logs shows that a reduced set of locations by time and type could be used for this methodology, facilitating ongoing data collection for activity-space-based planning efforts. ^