5 resultados para Hepatolenticular degeneration

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Variants in the complement cascade genes and the LOC387715/HTRA1, have been widely reported to associate with age-related macular degeneration (AMD), the most common cause of visual impairment in industrialized countries. METHODS/PRINCIPAL FINDINGS: We investigated the association between the LOC387715 A69S and complement component C3 R102G risk alleles in the Finnish case-control material and found a significant association with both variants (OR 2.98, p = 3.75 x 10(-9); non-AMD controls and OR 2.79, p = 2.78 x 10(-19), blood donor controls and OR 1.83, p = 0.008; non-AMD controls and OR 1.39, p = 0.039; blood donor controls), respectively. Previously, we have shown a strong association between complement factor H (CFH) Y402H and AMD in the Finnish population. A carrier of at least one risk allele in each of the three susceptibility loci (LOC387715, C3, CFH) had an 18-fold risk of AMD when compared to a non-carrier homozygote in all three loci. A tentative gene-gene interaction between the two major AMD-associated loci, LOC387715 and CFH, was found in this study using a multiplicative (logistic regression) model, a synergy index (departure-from-additivity model) and the mutual information method (MI), suggesting that a common causative pathway may exist for these genes. Smoking (ever vs. never) exerted an extra risk for AMD, but somewhat surprisingly, only in connection with other factors such as sex and the C3 genotype. Population attributable risks (PAR) for the CFH, LOC387715 and C3 variants were 58.2%, 51.4% and 5.8%, respectively, the summary PAR for the three variants being 65.4%. CONCLUSIONS/SIGNIFICANCE: Evidence for gene-gene interaction between two major AMD associated loci CFH and LOC387715 was obtained using three methods, logistic regression, a synergy index and the mutual information (MI) index.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Longitudinal in vivo proton magnetic resonance spectroscopy (1H-MRS) and immunohistochemistry were performed to investigate the tissue degeneration in traumatically injured rat spinal cord rostral and caudal to the lesion epicenter. On 1H-MRS significant decreases in N-acetyl aspartate (NAA) and total creatine (Cr) levels in the rostral, epicenter, and caudal segments were observed by 14 days, and levels remained depressed up to 56 days post-injury (PI). In contrast, the total choline (Cho) levels increased significantly in all three segments by 14 days PI, but recovered in the epicenter and caudal, but not the rostral region, at 56 days PI. Immunohistochemistry demonstrated neuronal cell death in the gray matter, and reactive astrocytes and axonal degeneration in the dorsal, lateral, and ventral white-matter columns. These results suggest delayed tissue degeneration in regions both rostrally and caudally from the epicenter in the injured spinal cord tissue. A rostral-caudal asymmetry in tissue recovery was seen both on MRI-observed hyperintense lesion volume and the Cho, but not NAA and Cr, levels at 56 days PI. These studies suggest that dynamic metabolic changes take place in regions away from the epicenter in injured spinal cord.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early diagnosis of Parkinson's disease (PD) is required to improve therapeutic responses. Indeed, a clinical diagnosis of resting tremor, rigidity, movement and postural deficiencies usually reflect >50% loss of the nigrostriatal system in disease. In a step to address this, quantitative diffusion tensor magnetic resonance imaging (DTI) was used to assess nigrostriatal degeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication model of dopaminergic nigral degeneration. We now demonstrate increased average diffusion (p<0.005) and decreased fractional anisotropy (p<0.03) in the substantia nigra (SN) of 5- to 7-day MPTP-treated animals when compared to saline controls. Transverse diffusivity demonstrated the most significant differences (p < or = 0.002) and correlated with the numbers of SN dopaminergic neurons (r=-0.75, p=0.012). No differences were found in the striatum, corpus callosum, cerebral cortex, or ventricles. These results demonstrate that DTI may be used as a surrogate biomarker of nigral dopaminergic neuronal degeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Early visual defects in degenerative diseases such as retinitis pigmentosa (RP) may arise from phased remodeling of the neural retina. The authors sought to explore the functional expression of ionotropic (iGluR) and group 3, type 6 metabotropic (mGluR6) glutamate receptors in late-stage photoreceptor degeneration. METHODS: Excitation mapping with organic cations and computational molecular phenotyping were used to determine whether retinal neurons displayed functional glutamate receptor signaling in rodent models of retinal degeneration and a sample of human RP. RESULTS: After photoreceptor loss in rodent models of RP, bipolar cells lose mGluR6 and iGluR glutamate-activated currents, whereas amacrine and ganglion cells retain iGluR-mediated responsivity. Paradoxically, amacrine and ganglion cells show spontaneous iGluR signals in vivo even though bipolar cells lack glutamate-coupled depolarization mechanisms. Cone survival can rescue iGluR expression by OFF bipolar cells. In a case of human RP with cone sparing, iGluR signaling appeared intact, but the number of bipolar cells expressing functional iGluRs was double that of normal retina. CONCLUSIONS: RP triggers permanent loss of bipolar cell glutamate receptor expression, though spontaneous iGluR-mediated signaling by amacrine and ganglion cells implies that such truncated bipolar cells still release glutamate in response to some nonglutamatergic depolarization. Focal cone-sparing can preserve iGluR display by nearby bipolar cells, which may facilitate late RP photoreceptor transplantation attempts. An instance of human RP provides evidence that rod bipolar cell dendrite switching likely triggers new gene expression patterns and may impair cone pathway function.