4 resultados para Henne, Chad

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Greetings from Dean Patricia Starck New DNP program explores new frontiers of nursing Profile Joanne V. Hickey, PhD, APRN, BC, ACNP, FAAN, FCCM With assistance from PARTNERS scholarship, Family Practice Nurse pursues her dream through new DNP program School of Nursing offers training in geriatrics for nurses PARTNERS organization endows first professorship University of Texas Health Services planning to expand number of clinics Caring Leaders The Engine of Innovation: School of Nursing researchers part of $36 million NIH grant to spur innovation Johnson and Johnson gala spotlights nurses Chad and Heath LePray UT School of Nursing and Memorial Hermann Hospital create partnership with Chief of Advanced Practice position A Tribute to Frank Cole Faculty Scholarship Endowed Faculty Positions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pem, a member of the PEPP homeobox family, is expressed in somatic cells in male and female reproductive tissues. In the adult murine testis, Pem is specifically expressed in Sertoli cells, where it is restricted to stages IV–VIII of the seminiferous epithelial cycle. To identify Pem's function in Sertoli cells, transgenic mice were generated that express Pem in Sertoli cells during all stages of the seminiferous epithelial cycle. This resulted in an increase in double-strand DNA breaks in preleptotene spermatocytes and single-strand DNA breaks in elongating spermatids. My results suggest that Pem regulates Sertoli-cell genes that encode secreted or cell-surface proteins that serve to control premeiotic DNA replication, DNA repair, and/or chromatin remodeling in the adjacent germ cells. Three additional transgenic mouse containing varying lengths of the Pem male-specific promoter (Pp) were generated to identify the sequences responsible for regulating Pem expression in the testis and epididymis. My analysis suggests that there are at least two regulatory regions in the Pem Pp. In the testis, region II directs androgen-dependent expression specifically in Sertoli cells whereas region I fine-tunes stage-specific expression by acting as a negative regulator. In the epididymis, region II confers androgen-dependent, developmentally-regulated expression in the caput whereas region I prevents inappropriate expression in the corpus. I also report the identification and characterization of two human PEPP family members related to Pem that I have named hPEPP1 and hPEPP2. The hPEPP1 and hPEPP2 homeodomains are more closely related to PEPP subfamily homeodomains than to any other homeodomain subfamily. Both genes are localized to the specific region of the human X chromosome that shares synteny with the region on the murine X chromosome containing three PEPP homeobox genes, Pem, Psx-1, and Psx-2. hPEPP1 and hPEPP2 mRNA expression is restricted to the testis but is aberrantly expressed in tumor cells of different origins, analogous to the expression pattern of Pem but not of Psx-1 or Psx-2. Unlike all known PEPP members, neither hPEPP1 nor hPEPP2 are expressed in placenta, which suggests that the regulation of the PEPP family has undergone significant alteration since the split between hominids and rodents. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the healthcare reform debate in the United States in 2009/2010, many health policy experts expressed a concern that expanding coverage would increase waiting times for patients to obtain care. Many complained that delays in obtaining care in turn would compromise the quality of healthcare in the United States. Using data from The Commonwealth Fund 2010 International Health Policy Survey in Eleven Countries, this study explored the relationship between wait times and quality of care, employing a wait time scale and several quality of care indicators present in the dataset. The impact of wait times on quality was assessed. Increased wait time was expected to reduce quality of care. However, this study found that wait times correlated with better health outcomes for some measures, and had no association with others. Since this is a pilot study and statistical significance was not achieved for any of the correlations, further research is needed to confirm and deepen the findings. However, if future studies confirm this finding, an emphasis on reducing wait times at the expense of other health system level performance variables may be inappropriate. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-resolution, small-bore PET systems suffer from a tradeoff between system sensitivity, and image quality degradation. In these systems long crystals allow mispositioning of the line of response due to parallax error and this mispositioning causes resolution blurring, but long crystals are necessary for high system sensitivity. One means to allow long crystals without introducing parallax errors is to determine the depth of interaction (DOI) of the gamma ray interaction within the detector module. While DOI has been investigated previously, newly available solid state photomultipliers (SSPMs) well-suited to PET applications and allow new modules for investigation. Depth of interaction in full modules is a relatively new field, and so even if high performance DOI capable modules were available, the appropriate means to characterize and calibrate the modules are not. This work presents an investigation of DOI capable arrays and techniques for characterizing and calibrating those modules. The methods introduced here accurately and reliably characterize and calibrate energy, timing, and event interaction positioning. Additionally presented is a characterization of the spatial resolution of DOI capable modules and a measurement of DOI effects for different angles between detector modules. These arrays have been built into a prototype PET system that delivers better than 2.0 mm resolution with a single-sided-stopping-power in excess of 95% for 511 keV g's. The noise properties of SSPMs scale with the active area of the detector face, and so the best signal-to-noise ratio is possible with parallel readout of each SSPM photodetector pixel rather than multiplexing signals together. This work additionally investigates several algorithms for improving timing performance using timing information from multiple SSPM pixels when light is distributed among several photodetectors.