2 resultados para Helpful elements

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The v-mos gene of Moloney murine sarcoma virus (Mo-MuSv) encodes a serine/threonine protein kinase capable of inducing cellular transformation. The c-mos protein is an important cell cycle regulator that functions during meiotic cell division cycles in germ cells. The overall function of c-mos in controlling meiosis is becoming better understood but the role of v-mos in malignant transformation of cells is largely unknown.^ In this study, v-mos protein was shown to be phosphorylated by M phase kinase in vitro and in vivo. The kinase activity and neoplastic transforming ability of v-mos is positively regulated by the phosphorylation. Together with the earlier finding of activation of M phase kinase by c-mos, these results raise the possibility of mutual regulation between M phase kinase and mos kinases.^ In addition to its functional interaction with the M phase kinase, the v-mos protein was shown to be present in the same protein complex with a cyclin-dependent kinase (cdk). In addition, an antibody that recognizes the cdk proteins was shown to co-precipitate the v-mos proteins in the interphase and mitotic cells transformed by p85$\sp{\rm gag-mos}$. Cdk proteins have been shown to be associated with nonmitotic cyclins which are potential oncogenes. The perturbation of cdk kinase or the activation of non-mitotic cyclins as oncogenes by v-mos could contribute directly to v-mos induced cellular transformation. v-mos proteins were also shown to interact with tubulin and vimentin, the essential components of microtubules and type IV intermediate filaments, respectively. The organizations of both microtubules and intermediate filaments are cell cycle-regulated. These results suggest that the v-mos kinase could be directly involved in inducing morphological changes typically seen in transformed cells.^ The interactions between the v-mos protein and these cell cycle control elements in regards to v-mos induced neoplastic transformation are discussed in detail in the text. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies to elucidate the function of vitamin D have demonstrated an important role in regulating bone-related cells, including osteoblasts and osteoclasts. A seemingly paradoxical observation is that 1,25(OH)$\sb2$D$\sb3$, the active metabolite of vitamin D, stimulates bone resorption, yet regulates transcription of genes expressed by osteoblasts. One mechanism that could explain these actions is the upregulation of transcription of osteoblast-specific genes. These gene products could then act as effectors to influence osteoclastic activity. We hypothesized that molecular signals could be deposited directly into the mineralized matrix in the form of noncollagenous proteins, such as osteopontin (OPN). The structure, biosynthesis and localization of OPN suggest that it could function to mediate the molecular "cross talk" between osteoblasts and osteoclasts in response to 1,25(OH)$\sb2$D$\sb3$. To begin to address this hypothesis, elucidation of the molecular mechanisms of action involved in the transactivation of OPN by 1,25(OH)$\sb2$D$\sb3$ is essential.^ In the present study, the rat opn gene was isolated and characterized. Functional analysis by transient transfection of the 5$\sp\prime$ flanking sequences of the rat opn gene fused to the luciferase gene demonstrated that OPN is transcriptionally upregulated by 1,25(OH)$\sb2$D$\sb3$, mediated through two vitamin D response elements (VDRE). Both proximal and distal VDREs are structurally similar (two imperfect direct repeats separated by a 3 nucleotide spacer) and bind protein complexes that include the VDR and retinoid-X receptor (RXR). Isolated VDRE expression constructs produce functional activity of equivalent magnitude of responsiveness to 1,25(OH)$\sb2$D$\sb3$. However, expression constructs containing either VDRE and at least 200 bp of 5$\sp\prime$ and 3$\sp\prime$ flanking sequence demonstrated that the distal VDRE produces an amplitude of response significantly higher than the proximal VDRE. We conclude that the transcriptional upregulation of the opn gene by 1,25(OH)$\sb2$D$\sb3$ involves the transactivation of two VDREs, while maximal responsiveness requires interaction of the VDREs with additional cis-elements contained in the 5$\sp\prime$ sequence. ^