41 resultados para Health models
em DigitalCommons@The Texas Medical Center
Resumo:
BACKGROUND: : Women at increased risk of breast cancer (BC) are not widely accepting of chemopreventive interventions, and ethnic minorities are underrepresented in related trials. Furthermore, there is no validated instrument to assess the health-seeking behavior of these women with respect to these interventions. METHODS: : By using constructs from the Health Belief Model, the authors developed and refined, based on pilot data, the Breast Cancer Risk Reduction Health Belief (BCRRHB) scale using a population of 265 women at increased risk of BC who were largely medically underserved, of low socioeconomic status (SES), and ethnic minorities. Construct validity was assessed using principal components analysis with oblique rotation to extract factors, and generate and interpret summary scales. Internal consistency was determined using Cronbach alpha coefficients. RESULTS: : Test-retest reliability for the pilot and final data was calculated to be r = 0.85. Principal components analysis yielded 16 components that explained 64% of the total variance, with communalities ranging from 0.50-0.75. Cronbach alpha coefficients for the extracted factors ranged from 0.45-0.77. CONCLUSIONS: : Evidence suggests that the BCRRHB yields reliable and valid data that allows for the identification of barriers and enhancing factors associated with use of breast cancer chemoprevention in the study population. These findings allow for tailoring treatment plans and intervention strategies to the individual. Future research is needed to validate the scale for use in other female populations. Cancer 2009. (c) 2009 American Cancer Society.
Resumo:
Cultural models of the domains healing and health are important in how people understand health and their behavior regarding it. The biomedicine model has been predominant in Western society. Recent popularity of holistic health and alternative healing modalities contrasts with the biomedical model and the assumptions upon which that model has been practiced. The holistic health movement characterizes an effort by health care providers and others such as nurses to expand the biomedical model and has often incorporated alternative modalities. This research described and compared the cultural models of healing of professional nurses and alternative healers. A group of nursing faculty who promote a holistic model were compared to a group of healers using healing touch. Ethnographic methods of participant observation, free listing and pile sort were used. Theoretical sampling in the free listings reached saturation at 18 in the group of nurses and 21 in the group of healers. Categories consistent for both groups emerged from the data. These were: physical, mental, attitude, relationships, spiritual, self management, and health seeking including biomedical and alternative resources. The healers had little differentiation between the concepts health and healing. The nurses, however, had more elements in self management for health and in health seeking for healing. This reflects the nurse's role in facilitating the shift in locus of responsibility between health and healing. The healers provided more specific information regarding alternative resources. The healer's conceptualization of health was embedded in a spiritual belief system and contrasted dramatically with that of biomedicine. The healer's models also contrasted with holistic health in the areas of holism, locus of responsibility, and dealing with uncertainty. The similarity between the groups and their dissimilarity to biomedicine suggest a larger cultural shift in beliefs regarding health care. ^
Resumo:
Evidence for an RNA gain-of-function toxicity has now been provided for an increasing number of human pathologies. Myotonic dystrophies (DM) belong to a class of RNA-dominant diseases that result from RNA repeat expansion toxicity. Specifically, DM of type 1 (DM1), is caused by an expansion of CUG repeats in the 3'UTR of the DMPK protein kinase mRNA, while DM of type 2 (DM2) is linked to an expansion of CCUG repeats in an intron of the ZNF9 transcript (ZNF9 encodes a zinc finger protein). In both pathologies the mutant RNA forms nuclear foci. The mechanisms that underlie the RNA pathogenicity seem to be rather complex and not yet completely understood. Here, we describe Drosophila models that might help unravelling the molecular mechanisms of DM1-associated CUG expansion toxicity. We generated transgenic flies that express inducible repeats of different type (CUG or CAG) and length (16, 240, 480 repeats) and then analyzed transgene localization, RNA expression and toxicity as assessed by induced lethality and eye neurodegeneration. The only line that expressed a toxic RNA has a (CTG)(240) insertion. Moreover our analysis shows that its level of expression cannot account for its toxicity. In this line, (CTG)(240.4), the expansion inserted in the first intron of CG9650, a zinc finger protein encoding gene. Interestingly, CG9650 and (CUG)(240.4) expansion RNAs were found in the same nuclear foci. In conclusion, we suggest that the insertion context is the primary determinant for expansion toxicity in Drosophila models. This finding should contribute to the still open debate on the role of the expansions per se in Drosophila and in human pathogenesis of RNA-dominant diseases.
Resumo:
Objective: To determine how a clinician’s background knowledge, their tasks, and displays of information interact to affect the clinician’s mental model. Design: Repeated Measure Nested Experimental Design Population, Sample, Setting: Populations were gastrointestinal/internal medicine physicians and nurses within the greater Houston area. A purposeful sample of 24 physicians and 24 nurses were studied in 2003. Methods: Subjects were randomized to two different displays of two different mock medical records; one that contained highlighted patient information and one that contained non-highlighted patient information. They were asked to read and summarize their understanding of the patients aloud. Propositional analysis was used to understand their comprehension of the patients. Findings: Different mental models were found between physicians and nurses given the same display of information. The information they shared was very minor compared to the variance in their mental models. There was additionally more variance within the nursing mental models than the physician mental models given different displays of the same information. Statistically, there was no interaction effect between the display of information and clinician type. Only clinician type could account for the differences in the clinician comprehension and thus their mental models of the cases. Conclusion: The factors that may explain the variance within and between the clinician models are clinician type, and only in the nursing group, the use of highlighting.
Resumo:
It is system dynamics that determines the function of cells, tissues and organisms. To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of biological systems which include metabolic networks, genetic regulatory networks and signal transduction pathways, under perturbation of external stimuli. In general, biological dynamic systems are partially observed. Therefore, a natural way to model dynamic biological systems is to employ nonlinear state-space equations. Although statistical methods for parameter estimation of linear models in biological dynamic systems have been developed intensively in the recent years, the estimation of both states and parameters of nonlinear dynamic systems remains a challenging task. In this report, we apply extended Kalman Filter (EKF) to the estimation of both states and parameters of nonlinear state-space models. To evaluate the performance of the EKF for parameter estimation, we apply the EKF to a simulation dataset and two real datasets: JAK-STAT signal transduction pathway and Ras/Raf/MEK/ERK signaling transduction pathways datasets. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic biochemical networks.
Resumo:
The central event in protein misfolding disorders (PMDs) is the accumulation of a misfolded form of a naturally expressed protein. Despite the diversity of clinical symptoms associated with different PMDs, many similarities in their mechanism suggest that distinct pathologies may cross talk at the molecular level. The main goal of this study was to analyze the interaction of the protein misfolding processes implicated in Alzheimer's and prion diseases. For this purpose, we inoculated prions in an Alzheimer's transgenic mouse model that develop typical amyloid plaques and followed the progression of pathological changes over time. Our findings show a dramatic acceleration and exacerbation of both pathologies. The onset of prion disease symptoms in transgenic mice appeared significantly faster with a concomitant increase on the level of misfolded prion protein in the brain. A striking increase in amyloid plaque deposition was observed in prion-infected mice compared with their noninoculated counterparts. Histological and biochemical studies showed the association of the two misfolded proteins in the brain and in vitro experiments showed that protein misfolding can be enhanced by a cross-seeding mechanism. These results suggest a profound interaction between Alzheimer's and prion pathologies, indicating that one protein misfolding process may be an important risk factor for the development of a second one. Our findings may have important implications to understand the origin and progression of PMDs.
Resumo:
Health-related quality of life (HRQOL) is an important measure of the effects of chronic liver disease in affected patients that helps guide interventions to improve well-being. However, the relationship between HRQOL and survival in liver transplant candidates remains unclear. We examined whether the Physical Component Summary (PCS) and Mental Component Summary (MCS) scores from the Short Form 36 (SF-36) Health Survey were associated with survival in liver transplant candidates. We administered the SF-36 questionnaire (version 2.0) to patients in the Pulmonary Vascular Complications of Liver Disease study, a multicenter prospective cohort of patients evaluated for liver transplantation in 7 academic centers in the United States between 2003 and 2006. Cox proportional hazards models were used with death as the primary outcome and adjustment for liver transplantation as a time-varying covariate. The mean age of the 252 participants was 54 +/- 10 years, 64% were male, and 94% were white. During the 422 person years of follow-up, 147 patients (58%) were listed, 75 patients (30%) underwent transplantation, 49 patients (19%) died, and 3 patients were lost to follow-up. Lower baseline PCS scores were associated with an increased mortality rate despite adjustments for age, gender, Model for End-Stage Liver Disease score, and liver transplantation (P for the trend = 0.0001). The MCS score was not associated with mortality (P for the trend = 0.53). In conclusion, PCS significantly predicts survival in liver transplant candidates, and interventions directed toward improving the physical status may be helpful in improving outcomes in liver transplant candidates.
Resumo:
Familial hemiplegic migraine type 1 (FHM1) is an autosomal dominant subtype of migraine with aura that is associated with hemiparesis. As with other types of migraine, it affects women more frequently than men. FHM1 is caused by mutations in the CACNA1A gene, which encodes the alpha1A subunit of Cav2.1 channels; the R192Q mutation in CACNA1A causes a mild form of FHM1, whereas the S218L mutation causes a severe, often lethal phenotype. Spreading depression (SD), a slowly propagating neuronal and glial cell depolarization that leads to depression of neuronal activity, is the most likely cause of migraine aura. Here, we have shown that transgenic mice expressing R192Q or S218L FHM1 mutations have increased SD frequency and propagation speed; enhanced corticostriatal propagation; and, similar to the human FHM1 phenotype, more severe and prolonged post-SD neurological deficits. The susceptibility to SD and neurological deficits is affected by allele dosage and is higher in S218L than R192Q mutants. Further, female S218L and R192Q mutant mice were more susceptible to SD and neurological deficits than males. This sex difference was abrogated by ovariectomy and senescence and was partially restored by estrogen replacement, implicating ovarian hormones in the observed sex differences in humans with FHM1. These findings demonstrate that genetic and hormonal factors modulate susceptibility to SD and neurological deficits in FHM1 mutant mice, providing a potential mechanism for the phenotypic diversity of human migraine and aura.
Resumo:
Getting evidence-based sexual health education activities into schools can be a complicated process. Working models that assist our educational system in the selection, implementation, and maintenance of effective school-based adolescent health programs are needed. Replicating sexual health programs in school-based settings: A model for schools provides a comprehensive and applied approach that engages all of the important stakeholders within a school district. The results from this study hold much potential to inform Texas and the nation about how a coordinated and practical model can assist school districts to increase the use of evidence-based programs addressing teen pregnancy prevention and sexual health issues.
Resumo:
The mechanism of tumorigenesis in the immortalized human pancreatic cell lines: cell culture models of human pancreatic cancer Pancreatic ductal adenocarcinoma (PDAC) is the most lethal cancer in the world. The most common genetic lesions identified in PDAC include activation of K-ras (90%) and Her2 (70%), loss of p16 (95%) and p14 (40%), inactivation p53 (50-75%) and Smad4 (55%). However, the role of these signature gene alterations in PDAC is still not well understood, especially, how these genetic lesions individually or in combination contribute mechanistically to human pancreatic oncogenesis is still elusive. Moreover, a cell culture transformation model with sequential accumulation of signature genetic alterations in human pancreatic ductal cells that resembles the multiple-step human pancreatic carcinogenesis is still not established. In the present study, through the stepwise introduction of the signature genetic alterations in PDAC into the HPV16-E6E7 immortalized human pancreatic duct epithelial (HPDE) cell line and the hTERT immortalized human pancreatic ductal HPNE cell line, we developed the novel experimental cell culture transformation models with the most frequent gene alterations in PDAC and further dissected the molecular mechanism of transformation. We demonstrated that the combination of activation of K-ras and Her2, inactivation of p16/p14 and Smad4, or K-ras mutation plus p16 inactivation, was sufficient for the tumorigenic transformation of HPDE or HPNE cells respectively. We found that these transformed cells exhibited enhanced cell proliferation, anchorage-independent growth in soft agar, and grew tumors with PDAC histopathological features in orthotopic mouse model. Molecular analysis showed that the activation of K-ras and Her2 downstream effector pathways –MAPK, RalA, FAK, together with upregulation of cyclins and c-myc were involved in the malignant transformation. We discovered that MDM2, BMP7 and Bmi-1 were overexpressed in the tumorigenic HPDE cells, and that Smad4 played important roles in regulation of BMP7 and Bmi-1 gene expression and the tumorigenic transformation of HPDE cells. IPA signaling pathway analysis of microarray data revealed that abnormal signaling pathways are involved in transformation. This study is the first complete transformation model of human pancreatic ductal cells with the most common gene alterations in PDAC. Altogether, these novel transformation models more closely recapitulate the human pancreatic carcinogenesis from the cell origin, gene lesion, and activation of specific signaling pathway and histopathological features.
Resumo:
America’s low-income families struggle to protect their children from multiple threats to their health and growth. Many research and advocacy groups explore the health and educational effects of food insecurity, but less is known about these effects on very young children. Children’s HealthWatch, a group of pediatric clinicians and public health researchers, has continuously collected data on the effects of food insecurity alone and in conjunction with other household hardships since 1998. The group’s peer reviewed research has shown that a number of economic risks at the household level, including food, housing and energy insecurity, tend to be correlated. These insecurities alone or in conjunction increase the risk that a young child will suffer various negative health consequences, including increases in lifetime hospitalizations, parental report of fair or poor health,1 or risk for developmental delays.2 Child food insecurity is an incremental risk indicator above and beyond the risk imposed by household-level food insecurity. The Children’sHealthwatch research also suggests public benefits programs modify some of these effects for families experiencing hardships. This empirical evidence is presented in a variety of public venues outside the usual scientific settings, such as congressional hearings, to support the needs of America’s most vulnerable population through policy change. Children’s HealthWatch research supports legislative solutions to food insecurity, including sustained funding for public programs and re-evaluation of the use of the Thrifty Food Plan as the basis of SNAP benefits calculations. Children’s HealthWatch is one of many models to support the American Academy of Pediatrics’ call to “stand up, speak up, and step up for children.”3 No isolated group or single intervention will solve child poverty or multiple hardships. However, working collaboratively each group has a role to play in supporting the health and well-being of young children and their families. 1. Cook JT, Frank DA, Berkowitz C, et al. Food insecurity is associated with adverse health outcomes among human infants and toddlers. J Nutr. 2004;134:1432-1438. 2. Rose-Jacobs R, Black MM, Casey PH, et al. Household food insecurity: associations with at-risk infant and toddler development. Pediatrics. 2008;121:65-72. 3. AAP leader says to stand up, speak up, and step up for child health [news release]. Boston, MA: American Academy of Pediatrics; October 11, 2008. http://www2.aap.org/pressroom/nce/nce08childhealth.htm. Accessed January 1, 2012.
Resumo:
In a study of Lunar and Mars settlement concepts, an analysis was made of fundamental design assumptions in five technical areas against a model list of occupational and environmental health concerns. The technical areas included the proposed science projects to be supported, habitat and construction issues, closed ecosystem issues, the "MMM" issues--mining, material-processing, and manufacturing, and the human elements of physiology, behavior and mission approach. Four major lessons were learned. First it is possible to relate public health concerns to complex technological development in a proactive design mode, which has the potential for long-term cost savings. Second, it became very apparent that prior to committing any nation or international group to spending the billions to start and complete a lunar settlement, over the next century, that a significantly different approach must be taken from those previously proposed, to solve the closed ecosystem and "MMM" problems. Third, it also appears that the health concerns and technology issues to be addressed for human exploration into space are fundamentally those to be solved for human habitation of the earth (as a closed ecosystem) in the 21st century. Finally, it is proposed that ecosystem design modeling must develop new tools, based on probabilistic models as a step up from closed circuit models. ^
Resumo:
Radiotherapy involving the thoracic cavity and chemotherapy with the drug bleomycin are both dose limited by the development of pulmonary fibrosis. From evidence that there is variation in the population in susceptibility to pulmonary fibrosis, and animal data, it was hypothesized that individual variation in susceptibility to bleomycin-induced, or radiation-induced, pulmonary fibrosis is, in part, genetically controlled. In this thesis a three generation mouse genetic model of C57BL/6J (fibrosis prone) and C3Hf/Kam (fibrosis resistant) mouse strains and F1 and F2 (F1 intercross) progeny derived from the parental strains was developed to investigate the genetic basis of susceptibility to fibrosis. In the bleomycin studies the mice received 100 mg/kg (125 for females) of bleomycin, via mini osmotic pump. The animals were sacrificed at eight weeks following treatment or when their breathing rate indicated respiratory distress. In the radiation studies the mice were given a single dose of 14 or 16 Gy (Co$\sp{60})$ to the whole thorax and were sacrificed when moribund. The phenotype was defined as the percent of fibrosis area in the left lung as quantified with image analysis of histological sections. Quantitative trait loci (QTL) mapping was used to identify the chromosomal location of genes which contribute to susceptibility to bleomycin-induced pulmonary fibrosis in C57BL/6J mice compared to C3Hf/Kam mice and to determine if the QTL's which influence susceptibility to bleomycin-induced lung fibrosis in these progenitor strains could be implicated in susceptibility to radiation-induced lung fibrosis. For bleomycin, a genome wide scan revealed QTL's on chromosome 17, at the MHC, (LOD = 11.7 for males and 7.2 for females) accounting for approximately 21% of the phenotypic variance, and on chromosome 11 (LOD = 4.9), in male mice only, adding 8% of phenotypic variance. The bleomycin QTL on chromosome 17 was also implicated for susceptibility to radiation-induced fibrosis (LOD = 5.0) and contributes 7% of the phenotypic variance in the radiation study. In conclusion, susceptibility to both bleomycin-induced and radiation-induced pulmonary fibrosis are heritable traits, and are influenced by a genetic factor which maps to a genomic region containing the MHC. ^
Resumo:
This paper reports a comparison of three modeling strategies for the analysis of hospital mortality in a sample of general medicine inpatients in a Department of Veterans Affairs medical center. Logistic regression, a Markov chain model, and longitudinal logistic regression were evaluated on predictive performance as measured by the c-index and on accuracy of expected numbers of deaths compared to observed. The logistic regression used patient information collected at admission; the Markov model was comprised of two absorbing states for discharge and death and three transient states reflecting increasing severity of illness as measured by laboratory data collected during the hospital stay; longitudinal regression employed Generalized Estimating Equations (GEE) to model covariance structure for the repeated binary outcome. Results showed that the logistic regression predicted hospital mortality as well as the alternative methods but was limited in scope of application. The Markov chain provides insights into how day to day changes of illness severity lead to discharge or death. The longitudinal logistic regression showed that increasing illness trajectory is associated with hospital mortality. The conclusion is reached that for standard applications in modeling hospital mortality, logistic regression is adequate, but for new challenges facing health services research today, alternative methods are equally predictive, practical, and can provide new insights. ^
Resumo:
Most statistical analysis, theory and practice, is concerned with static models; models with a proposed set of parameters whose values are fixed across observational units. Static models implicitly assume that the quantified relationships remain the same across the design space of the data. While this is reasonable under many circumstances this can be a dangerous assumption when dealing with sequentially ordered data. The mere passage of time always brings fresh considerations and the interrelationships among parameters, or subsets of parameters, may need to be continually revised. ^ When data are gathered sequentially dynamic interim monitoring may be useful as new subject-specific parameters are introduced with each new observational unit. Sequential imputation via dynamic hierarchical models is an efficient strategy for handling missing data and analyzing longitudinal studies. Dynamic conditional independence models offers a flexible framework that exploits the Bayesian updating scheme for capturing the evolution of both the population and individual effects over time. While static models often describe aggregate information well they often do not reflect conflicts in the information at the individual level. Dynamic models prove advantageous over static models in capturing both individual and aggregate trends. Computations for such models can be carried out via the Gibbs sampler. An application using a small sample repeated measures normally distributed growth curve data is presented. ^