316 resultados para Health Sciences, Radiology
em DigitalCommons@The Texas Medical Center
Resumo:
The Houston Academy of Medicine--Texas Medical Center (HAM--TMC) Library collected data on friends of the library groups from 103 health sciences libraries, using a mail questionnaire. Sixteen of the responding libraries had independent friends groups; seven had friends groups that were subordinate to a university group. The sixteen independent groups gave as their major purposes (1) to raise money for their associated library and (2) to develop support for their library. These groups contributed an average of $4,870 a year to their libraries, the money being used primarily to purchase rare books and working-collection books and to sponsor social events. The subordinate groups contributed relatively little money to the health sciences libraries responding to the survey.
Resumo:
Introduction: Concerns about the quality of physician education have changed current medical education practices. Learners must demonstrate competency in core areas, rather than solely participating in educational activities. Academic medical institutions are challenged with identifying leaders to direct curricular and evaluation reforms. An innovative partnership between the University of Houston College of Education and Baylor College of Medicine, the University of Texas Medical School at Houston, and the University of Texas Dental Branch at Houston offers a Masters of Education in Teaching degree with an emphasis in Health Sciences. Courses encompass fundamental areas including curriculum, instruction, technology, measurement, research design and statistics. [See PDF for complete abstract]
Resumo:
The study is a three-armed randomized controlled trial comparing values for heart rate variability (HRV), a measure of cardiovascular health, throughout a yoga intervention of breast cancer patients undergoing radiotherapy. Patients attended either a yoga (n=45), stretch, (n=46), or control (n=42) condition 3 times per week for 6 weeks of radiation. Electrocardiograms (ECGs) were conducted on each participant to provide the values necessary for HRV analysis. Analyses focused on examining scores for those participants with HRV baseline values considered to be below the cutoff point for healthy HRV levels, defined by the authors as below the cutpoint of 68 ms. From the entire sample of 133 with available baselines, 26 yogis, 26 stretchers, and 23 controls were determined to be “pathologic” in terms of HRV, and selected for follow-up analysis at 3 weeks and then again at 6 weeks. Though no statistically significant differences were found between either group means at each timepoint or group change score means, the yoga group had consistently higher mean score and mean change scores. These findings are suggestive and indicate the need to refine the use of ECGs and HRV analysis programs to more accurately and comprehensively assess the effects of yoga on cardiovascular health in cancer patients.^
Resumo:
InGen of Creative Production in the Health Sciences is a compendium of innovative thinking exercises for individuals and groups, derived from an eclectic array of practical guides for professionals in a variety of fields. Segmented into five subcategories across twenty two chapters, the effort seeks to make techniques for increasing innovative problem solving more accessible to a diverse audience of problem solvers. The chapters of Roberta Ness. Innovation Generation (2012, Oxford University Press) provide the themes for each of the chapters in the workbook. It is intended that those who read Ness. Innovation Generation will benefit from practicing the constructs of innovative thinking exemplified in each exercise.^ The methods used to gather data, in this case mostly innovative thinking exercises, included literature reviews of existing innovative thinking tools, classroom materials, and theory-driven exploration of exercises to fill in gaps in extant materials. Specifically, Google.com and Amazon.com searches were conducted using the terms “innovation,” “innovative,” “innovator,” “creative,” “novelty,” “thinking,” together with some variance of “book,” “workbook,” and “exercise.” The results were sorted thematically to show correspondence with the themes in Ness (2012) and compared to suggested best practices of 50 years of scientific research on innovative thinking. Where themes were suggested by Ness (2012) and peer-reviewed research on innovation but unavailable in published innovation thinking workbooks, new exercises were developed. The five type subcategories into which these results were organized are: individual direct, individual indirect, group direct, group indirect and probing question. It is anticipated that the five type subcategories and spectrum of themes will equip problem solvers in a variety of capacities.^
Resumo:
Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) were used to non-invasively determine if cirrhosis induced by carbon tetrachloride (CCl$\sb4$) and phospholipase-D (PLD) could be distinguished from fatty infiltration in rat. MRS localization and water suppression methods were developed, implemented and evaluated in terms of their application to in vivo proton NMR studies of experimental liver disease. MRS studies were also performed to quantitate fatty infiltration resulting from carbon tetrachloride (CCl$\sb4$) or alcohol (ethanol) administration and the MRS results were confirmed using biochemical total lipid analysis and histology. $\rm T\sb1$ weighted MR images acquired weekly, 48 hours post administration, demonstrated only a slight increase in overall liver intensity with CCl$\sb4$ or alcohol administration, which is consistent with previously reported results. The MR images were able to detect nodules resulting from CCl$\sb4$+PLD induced cirrhosis as hypointense regions, also consistent with previous reports. Localized in vivo water and lipid proton $\rm T\sb1$ relaxation time measurements were performed and demonstrated no statistically significant trends for either agent. In vivo proton spectra were also acquired using stimulated echo techniques to quantitatively follow the changes in liver lipid content. The changes in liver lipid content observed using MRS were verified by total lipid analysis using the Folch technique and histology. The in vivo $\rm T\sb1$ and lipid quantification data str inconsistent with the previous hypothesis that the changes in $\rm T\sb1$ weighted images were the result of increased "free" water content and, therefore, increased water $\rm T\sb1$ relaxation times. These data indicate that the long term changes are more likely the result of changes in lipid content. The data are also shown to agree with the accepted hypothesis that the time course and mechanism of fatty infiltration are different for CCl$\sb4$ and alcohol. The hypothesis that the lipids resulting from either protocol are from the same lipid fraction(s), presumably triglycerides, is also supported. And lastly, on the basis of MR images and quantitative MRS lipid information, it was shown that cirrhosis could be distinguished from fatty infiltration. ^
Resumo:
The hypothesis to be tested is that there are two distinct types of chronic responses in irradiated normal tissues, each resulting from damage to different cell populations in the tissue. The first is a sequala of chronic epithelial depletion in which the tissue's integrity cannot be maintained, i.e. a "consequential" chronic response. The other response is due to cell loss in the connective tissue and/or vascular stroma, i.e. a "primary" chronic response. The purpose of this study was to test the hypothesis in the murine colon by first, establishing a model of each chronic response and then, by determining whether the responses differed in timing of expression, histology, and expression of specific collagen types. The model of late damage used was colonic obstructions/strictures induced by a single dose of 27 Gy ("consequential" response) and two equal doses of 14.75 Gy (t = 10 days) ("primary" response). "Consequential" lesions appeared as early as 5 weeks after 27 Gy and were characterized by a deep mucosal ulceration and a thickened fibrotic serosa containing excessive accumulations of collagen types I and III. Both types were commingled in the scar at the base of the ulcer. Fibroblasts were synthesizing pro-collagen types I and III mRNA 10 weeks prior to measurable increases in collagen. A significant decrease in the ratio of collagen types I:III was associated with the "consequential" response at 4-5 months post-irradiation. The "primary" response, on the other hand, did not appear until 40 weeks after the split dose even though the total dose delivered was approximately the same as that for the "consequential" response. The "primary" response was characterized with an intact mucosa and a thickened fibrotic submucosa which contained excessive amounts of only collagen type I. An increased number of fibroblasts were synthesizing pro-collagen type I mRNA nearly 25 weeks before collagen type I levels were increased. The "primary" response lesion had a significantly elevated collagen type I:III ratio at 10-13 months post-irradiation. These data show a clear difference between the two chronic response and suggest that not all chronic responses share a common pathogenesis, but depend on the cell population in the tissue that is damaged. ^
Resumo:
A three-dimensional model has been proposed that uses Monte Carlo and fast Fourier transform convolution techniques to calculate the dose distribution from a fast neutron beam. This method transports scattered neutrons and photons in the forward, lateral, and backward directions and protons, electrons, and positrons in the forward and lateral directions by convolving energy spread kernels with initial interaction available energy distributions. The primary neutron and photon spectrums have been derived from narrow beam attenuation measurements. The positions and strengths of the effective primary neutron, scattered neutron, and photon sources have been derived from dual ion chamber measurements. The size of the effective primary neutron source has been measured using a copper activation technique. Heterogeneous tissue calculations require a weighted sum of two convolutions for each component since the kernels must be invariant for FFT convolution. Comparisons between calculations and measurements were performed for several water and heterogeneous phantom geometries. ^
Resumo:
In a phase I clinical trial, six multiple myeloma patients, who were non-responsive to conventional therapy and were scheduled for bone marrow transplantation, received Holmium-166 ($\sp{166}$Ho) labeled to a bone seeking agent, DOTMP (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethylene-phosphonic acid), for the purpose of bone marrow ablation. The specific aims of my research within this protocol were to evaluate the toxicity and efficacy of $\sp{166}$Ho DOTMP by quantifying the in vivo pharmacokinetics and radiation dosimetry, and by correlating these results to the biologic response observed. The reproducibility of pharmacokinetics from multiple injections of $\sp{166}$Ho DOTMP administered to these myeloma patients was demonstrated from both blood and whole body retention. The skeletal concentration of $\sp{166}$Ho DOTMP was heterogenous in all six patients: high in the ribs, pelvis, and lumbar vertebrae regions, and relatively low in the femurs, arms, and head.^ A novel technique was developed to calculate the radiation dose to the bone marrow in each skeletal ROI, and was applied to all six $\sp{166}$Ho DOTMP patients. Radiation dose estimates for the bone marrow calculated using the standard MIRD "S" factors were compared with the average values derived from the heterogenous distribution of activity in the skeleton (i.e., the regional technique). The results from the two techniques were significantly different; the average of the dose estimates from the regional technique were typically 30% greater. Furthermore, the regional technique provided a range of radiation doses for the entire marrow volume, while the MIRD "S" factors only provided a single value. Dose volume histogram analysis of data from the regional technique indicated a range of dose estimates that varied by a factor of 10 between the high dose and low dose regions. Finally, the observed clinical response of cells and abnormal proteins measured in bone marrow aspirates and peripheral blood samples were compared with radiation dose estimates for the bone marrow calculated from the standard and regional technique. The results showed the regional technique values correlated more closely to several clinical response parameters. (Abstract shortened by UMI.) ^
Resumo:
In this investigation, bromine-77 was produced with a medical cyclotron and imaged with gamma cameras. Br-77 emits a 240 kev photon with a half life of 56 hours. The C-Br bond is stronger than the C-I bond and bromine is not collected in the thyroid. Bromine can be used to label many organic molecules by methods analogous to radioiodination. The only North American source of Br-77 in the 70's and 80's was Los Alamos National Laboratory, but it discontinued production in 1989. In this method, a p,3n reaction on Br-77 produces Kr-77 which decays with a 1.2 hour half life to Br-77. A cyclotron generated 40 MeV proton beam is incident on a nearly saturated NaBr or LiBr solution contained in a copper or titanium target. A cooling chamber through which helium gas is flowed separates the solution from the cyclotron beam line. Helium gas is also flowed through the solution to extract Kr-77 gas. The mixture flows through a nitrogen trap where Kr-77 freezes and is allowed to decay to Br-77. Eight production runs were performed, three with a copper target and five with a titanium target with yields of 40, 104, 180, 679, 1080, 685, 762 and 118 uCi respectively. Gamma ray spectroscopy has shown the product to be very pure, however corrosion has been a major obstacle, causing the premature retirement of the copper target. Phantom and in-vivo rat nuclear images, and an autoradiograph in a rat are presented. The quality of the nuclear scans is reasonable and the autoradiograph reveals high isotope uptake in the renal parenchyma, a more moderate but uniform uptake in pulmonary and hepatic tissue, and low soft tissue uptake. There is no isotope uptake in the brain or the gastric mucosa. ^
Resumo:
Serial quantitative and correlative studies of experimental spinal cord injury (SCI) in rats were conducted using three-dimensional magnetic resonance imaging (MRI). Correlative measures included morphological histopathology, neurobehavioral measures of functional deficit, and biochemical assays for N-acetyl-aspartate (NAA), lactate, pyruvate, and ATP. A spinal cord injury device was characterized and provided a reproducible injury severity. Injuries were moderate and consistent to within $\pm$20% (standard deviation). For MRI, a three-dimensional implementation of the single spin-echo FATE (Fast optimum angle, short TE) pulse sequence was used for rapid acquisition, with a 128 x 128 x 32 (x,y,z) matrix size and a 0.21 x 0.21 x 1.5 mm resolution. These serial studies revealed a bimodal characteristic in the evolution in MRI pathology with time. Early and late phases of SCI pathology were clearly visualized in $T\sb2$-weighted MRI, and these corresponded to specific histopathological changes in the spinal cord. Centralized hypointense MRI regions correlated with evidence of hemorrhagic and necrotic tissue, while surrounding hyperintense regions represented edema or myelomalacia. Unexpectedly, $T\sb2$-weighted MRI pathology contrast at 24 hours after injury appeared to subside before peaking at 72 hours after injury. This change is likely attributable to ongoing secondary injury processes, which may alter local $T\sb2$ values or reduce the natural anisotropy of the spinal cord. MRI, functional, and histological measures all indicated that 72 hours after injury was the temporal maximum for quantitative measures of spinal cord pathology. Thereafter, significant improvement was seen only in neurobehavioral scores. Significant correlations were found between quantitated MRI pathology and histopathology. Also, NAA and lactate levels correlated with behavioral measures of the level of function deficit. Asymmetric (rostral/caudal) changes in NAA and lactate due to injury indicate that rostral and caudal segments from the injury site are affected differently by the injury. These studies indicate that volumetric quantitation of MRI pathology from $T\sb2$-weighted images may play an important role in early prediction of neurologic deficit and spinal cord pathology. The loss of $T\sb2$ contrast at 24 hours suggests MR may be able to detect certain delayed mechanisms of secondary injury which are not resolved by histopathology or other radiological modalities. Furthermore, in vivo proton magnetic resonance spectroscopy (MRS) studies of SCI may provide a valuable addition source of information about changes in regional spinal cord lactate and NAA levels, which are indicative of local metabolic and pathological changes. ^
Resumo:
The successful management of cancer with radiation relies on the accurate deposition of a prescribed dose to a prescribed anatomical volume within the patient. Treatment set-up errors are inevitable because the alignment of field shaping devices with the patient must be repeated daily up to eighty times during the course of a fractionated radiotherapy treatment. With the invention of electronic portal imaging devices (EPIDs), patient's portal images can be visualized daily in real-time after only a small fraction of the radiation dose has been delivered to each treatment field. However, the accuracy of human visual evaluation of low-contrast portal images has been found to be inadequate. The goal of this research is to develop automated image analysis tools to detect both treatment field shape errors and patient anatomy placement errors with an EPID. A moments method has been developed to align treatment field images to compensate for lack of repositioning precision of the image detector. A figure of merit has also been established to verify the shape and rotation of the treatment fields. Following proper alignment of treatment field boundaries, a cross-correlation method has been developed to detect shifts of the patient's anatomy relative to the treatment field boundary. Phantom studies showed that the moments method aligned the radiation fields to within 0.5mm of translation and 0.5$\sp\circ$ of rotation and that the cross-correlation method aligned anatomical structures inside the radiation field to within 1 mm of translation and 1$\sp\circ$ of rotation. A new procedure of generating and using digitally reconstructed radiographs (DRRs) at megavoltage energies as reference images was also investigated. The procedure allowed a direct comparison between a designed treatment portal and the actual patient setup positions detected by an EPID. Phantom studies confirmed the feasibility of the methodology. Both the moments method and the cross-correlation technique were implemented within an experimental radiotherapy picture archival and communication system (RT-PACS) and were used clinically to evaluate the setup variability of two groups of cancer patients treated with and without an alpha-cradle immobilization aid. The tools developed in this project have proven to be very effective and have played an important role in detecting patient alignment errors and field-shape errors in treatment fields formed by a multileaf collimator (MLC). ^
Resumo:
A two-pronged approach for the automatic quantitation of multiple sclerosis (MS) lesions on magnetic resonance (MR) images has been developed. This method includes the design and use of a pulse sequence for improved lesion-to-tissue contrast (LTC) and seeks to identify and minimize the sources of false lesion classifications in segmented images. The new pulse sequence, referred to as AFFIRMATIVE (Attenuation of Fluid by Fast Inversion Recovery with MAgnetization Transfer Imaging with Variable Echoes), improves the LTC, relative to spin-echo images, by combining Fluid-Attenuated Inversion Recovery (FLAIR) and Magnetization Transfer Contrast (MTC). In addition to acquiring fast FLAIR/MTC images, the AFFIRMATIVE sequence simultaneously acquires fast spin-echo (FSE) images for spatial registration of images, which is necessary for accurate lesion quantitation. Flow has been found to be a primary source of false lesion classifications. Therefore, an imaging protocol and reconstruction methods are developed to generate "flow images" which depict both coherent (vascular) and incoherent (CSF) flow. An automatic technique is designed for the removal of extra-meningeal tissues, since these are known to be sources of false lesion classifications. A retrospective, three-dimensional (3D) registration algorithm is implemented to correct for patient movement which may have occurred between AFFIRMATIVE and flow imaging scans. Following application of these pre-processing steps, images are segmented into white matter, gray matter, cerebrospinal fluid, and MS lesions based on AFFIRMATIVE and flow images using an automatic algorithm. All algorithms are seamlessly integrated into a single MR image analysis software package. Lesion quantitation has been performed on images from 15 patient volunteers. The total processing time is less than two hours per patient on a SPARCstation 20. The automated nature of this approach should provide an objective means of monitoring the progression, stabilization, and/or regression of MS lesions in large-scale, multi-center clinical trials. ^
Resumo:
Radioimmunotherapy (RIT) with i.v. administered radiolabeled IgG can selectively irradiate tumor cells in vivo. However, it only provides effective therapy for lymphomas. Intracompartmental RIT with radiolabeled human monoclonal IgM may allow curative treatment of solid tumors by increasing tumor deposition of radioactivity, reducing systemic toxicity and allowing repeated administration. This hypothesis was tested in nude mouse models with IgM radiolabeled with indium-111 $\rm(\sp{111}In)$ or yttrium-90 $\rm(\sp{90}Y).$ The use of two radioisotopes, $\rm\sp{111}In$ for imaging and $\rm\sp{90}Y$ for therapy, allow for more quantitative and cautious development of RIT.^ Radiolabled 2B12, an IgM reactive with human ovarian carcinomas was tested by i.v. and intraperitoneal (i.p.) administration in nude mice bearing i.p. nodules of a human ovarian carcinoma cell line (SKOV3 NMP2). Radiolabeled CR4E8, an IgM reactive with human squamous cell carcinomas was tested by i.v. and intralesional (i.l.) administration in nude mice bearing subcutaneous tumors of a human head and neck squamous cell carcinoma cell line (886). These two models were selected to test proof of concept. Radiolabeled irrelevant IgM (CH-1B9), and $\rm\sp{90}Y$-aggregate served as specificity controls. Biodistribution was performed by excising, weighing and then measuring the radioactivity of tumor and normal organs. Therapy was conducted with i.p. $\rm\sp{90}Y$-labeled 2B12 using both single and fractionated administration and with i.l. $\rm\sp{90}Y$-labeled CR4E8 using single administration. Mice were monitored for tumor response, survival and systemic toxicity.^ Intracompartmental administration of radiolabeled IgM produced immediate high and prolonged tumor deposition of radioactivity with low normal tissue uptake. In contrast, i.v. administration resulted in low tumor, but high liver and spleen uptake. Similar biodistributions were demonstrated for $\rm\sp{111}In$- and $\rm\sp{90}Y$-labeled IgM. Intraperitoneal therapy with $\rm\sp{90}Y$-labeled 2B12 increased survival by approximately 12 days for every 100 $\rm\mu Ci$ of activity without significant toxicity for single (0-300 $\rm\mu Ci)$ and fractionated (150-510 $\rm\mu Ci)$ administration. Intralesional therapy with $\rm\sp{90}Y$-labeled CR4E8 (150-400 $\rm\mu Ci)$ induced prolonged complete regressions. Significant local or systemic toxicity was not observed.^ Intracompartmental RIT with radiolabeled tumor-reactive human monoclonal IgM can selectively irradiate tumor cells. Intracompartmental radiolabled IgM can significantly extend the survival of treated mice with minimal toxicity. It deserves further development as a new cancer therapy. ^