17 resultados para Hamster buccal mucosa
em DigitalCommons@The Texas Medical Center
Resumo:
The availability of isotype specific antisera for $\beta$-tubulin, coupled with genetic and biochemical analysis, has allowed the determination of $\beta$-tubulin isotype expression and distribution in Chinese hamster ovary (CHO) cells. Using genetic manipulations involving selection for colcemid resistance followed by reversion and reselection for drug resistance, we have succeeded in isolating cell lines that exhibit three major and one minor $\beta$-tubulin spots by two-dimensional gel electrophoresis. In concert with isotype specific antibodies, analysis of these mutants demonstrates that CHO cells express two copies of isotype I, at least one copy of isotype IV, and very small amounts of isotype V. Their stoichiometry is approximately 1:1:0.7:0.2. All three isotypes assemble into both cytoplasmic and spindle microtubules, and are similar in their responses to cold, colcemid, and calcium induced depolymerization. They have comparable turnover rates and are equally sensitive to depression of synthesis upon colchicine treatment. These results suggest that $\beta$-tubulin isotypes are used interchangeably to assemble microtubule structures in CHO cells. However, of 18 colcemid resistant mutants with a demonstrable alteration in $\beta$-tubulin, all were found to have the alteration in isotype I, thus leaving open the possibility that subtle differences in isotype properties may exist. Under various conditions of the cell growth, the relative proportion of each expressed isotype does not significantly seem to change except in the early G1 phase of the cell cycle. At this time the synthesis of isotype V increases more than two fold relative to isotype I and IV, while at the same time, total $\beta$-tubulin synthesis is decreased about 60-70%. ^
Resumo:
The carcinogenic activity of water-insoluble crystalline nickel sulfide requires phagocytosis and lysosome-mediated intracellular dissolution of the particles to yield Ni('2+). This study investigated the extent and nature of the DNA damage in Chinese hamster ovary cells treated with various nickel compounds using the technique of alkaline elution. Crystalline NiS and water-soluble NiCl(,2) induced single strand breaks that were repaired quickly and DNA-protein crosslinks that persisted up to 24 hr after exposure to nickel. The induction of single strand breaks was concentration dependent at both noncytotoxic and lethal amounts of nickel. The induction of DNA-protein crosslinks was concentration dependent but was absent at lethal amounts of nickel. The cytoplasmic and nuclear uptake of nickel was concentration dependent even at the toxic level of nickel. However, the induction of DNA-protein crosslinks by nickel required active cell cycling and occurred predominantly in mid-late S phase of the cell cycle, suggesting that the lethal amounts of nickel inhibited DNA-protein crosslinking by inhibiting active cell cycling. Since the DNA-protein crosslinking induced by nickel was resistant to DNA repair, the nature of this lesion was investigated using various methods of DNA isolation and chromatin fractionation in combination with SDS-polyacrylamide gel electrophoresis. High molecular weight, non-histone chromosomal proteins and possibly histone 1 were preferentially crosslinked to DNA by nickel. The crosslinked proteins were concentrated in a magnesium-insoluble fraction of sonicated chromatin (5% of the total) that was similar to heterochromatin in solubility and protein composition. Alterations in DNA structure and function, brought about by the effect of nickel on protein-DNA interactions, may be related to the carcinogenicity of nickel compounds. ^
Resumo:
Resistance of tumors to pharmacologic agents poses a significant problem in the treatment of human malignancies. This study overviews the scope of clinical resistance and focuses upon current research attempts toward investigation of the phenomenon of multidrug resistance (MDR).^ The objective of this investigation was to determine whether gene amplification had a role in the development of the MDR phenotype in Chinese hamster ovary cells (CHO) primarily selected for resistance to vincristine (VCR). A DNA fragment, previously shown to be amplified in two independently derived Chinese hamster cell lines exhibiting the MDR phenotype, was also amplified in VCR hamster lines. Sequences flanking this fragment were shown to contain coding information for a 4.3 kb transcript overproduced in VCR cells. These sequences were not enriched in double minute DNA preparations isolated from VCR cells. There was an approximately forty-fold increase in both the level of gene amplification and transcript overproduction in the VCR cell lines, independent of the level of primary resistance. This DNA amplification and overproduction of the 4.3 kb transcript was also demonstrated in CHO cells independently selected for resistance to Adriamycin and vinblastine.^ All the DNA sequences of two hamster cDNA clones containing 785 and 932 base pair inserts showed direct homology to the published mouse mdr sequences (about 90%). This sequence conservation held for only portions of the gene when the human mdr1 sequences were compared with those from either the mouse or hamster.^ Somatic cell hybrids, constructed between VCR CHO cells and sensitive murine cells, were used to determine whether there was a functional relationship between the chromosome bearing the amplified sequences and the MDR phenotype. Concordant segregation between vincristine resistance, the MDR phenotype, the presence of MDR-associated amplified sequences, overexpression of the mRNA encoded by these sequences, overexpression of the mRNA encoded by these sequences, and CHO chromosome Z1 was consistent with the hypothesis that there is an amplified gene on chromosome Z1 of the VCR CHO cells which is responsible for MDR in these cells. ^
Resumo:
The biochemical determinants of cytotoxicity of the purine nucleoside analog, 9-(beta)-D-xylofuranosyladenine (xyl-A) were studied in wild-type Chinese hamster ovary cells and in nucleoside kinase deficient mutants. It was found that {('3)H}xyl-A was readily phosphorylated to the triphosphate level in both the wild-type and deoxycytidine kinase deficient mutant, but not by the adenosine kinase deficient cells. Values for the apparent Km and Vmax of this uptake process were 43.9 (mu)M and 118.7 nmol/min/10('9) cells, respectively. Cloning procedures indicated that the viability of CHO cells was decreased 90 per cent by a 5-hr incubation with 10 (mu)M xyl-A. However, the toxicity of xyl-A was increased 100-fold by the addition of a nontoxic concentration (10 (mu)M) of the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) to the medium. High-pressure liquid chromatographic analysis indicated that after 5 hr, the concentration of 9-(beta)-D-xylofuranosyladenine 5'-triphosphate (xyl-ATP) in cells incubated with xyl-A plus EHNA was 2.0 mM, four times greater than in those cells incubated with xyl-A alone. Incubation with xyl-A plus EHNA had no significant effect on the cellular concentrations of 5-phosphoribosyl-1-pyrophosphate after 1 hr whereas, treatment with 3'-dexoyadenosine (cordycepin) decreased the concentration of this metabolite. Determinations of the cellular nucleoside triphosphates indicated that under conditions that resulted in an intracellular accumulation of 500 (mu)M xyl-ATP, the endogenous concentrations of neither the ribonucleoside triphosphates nor deoxyribonucleoside triphosphates were significantly different from those of control cells. The ID(,50) for {('3)H}thymidine incorporation into DNA, 105 (mu)M xyl-ATP, was four-fold less than the ID(,50) for {('3)H}uridine incorporation into RNA suggesting that the process of DNA synthesis is more sensitive to the presence of xyl-ATP. When removed from exogenous xyl-A, CHO cells failed to recover their ability to synthesize RNA and DNA, although the intracellular xyl-ATP concentration decreased to less than 35 (mu)M. The selective inhibition of RNA synthesis by 6-azauridine did not prevent the expression of toxicity by xyl-ATP. However, the selective inhibition of DNA synthesis by ara-C significantly spared toxicity in cells that had accumulated an otherwise lethal concentration of xyl-ATP. It is shown that in cells which had accumulated 1.27 mM {('3)H}xyl-ATP, {('3)H}xyl-A was found to terminate cellular RNA chains at a frequency of 1.42 (mu)mol of {('3)H}xyl-A 3' termini per mol of mononucleotide. These results indicate that a general mechanism for the toxicity of xyl-A to CHO cells includes the cellular accumulation of xyl-ATP, which serves as a substrate for RNA synthesizing enzymes and subsequently is incorporated into nascent RNA transcripts as a chain terminator. A specific mechanism involving the premature termination of RNA primers required for the initiation of DNA synthesis is proposed to account for the inhibitory action of xyl-ATP on DNA synthesis. ^
Resumo:
In both euploid Chinese hamster (Cricetulus griseus) cells and pseudodiploid Chinese hamster ovary (CHO) cells, gene assignments were accomplished by G band chromosome and isozyme analysis (32 isozymes) of interspecific somatic cell hybrids obtained after HAT selection of mouse CL 1D (TK('-)) cells which were PEG-fused with either euploid Chinese hamster cells or HPRT('-) CHO cells. Hybrids slowly segregated hamster chromosomes. Clone panels consisting of independent hybrid clones and subclones containing different combinations of Chinese hamster chromosomes and isozymes were established from each type of fusion.^ These clone panels enabled us to provisionally assign the loci for: nucleoside phosphorylase (NP), glyoxalase (GLO), glutathione reductase (GSR), adenosine kinase (ADK), esterase D (ESD), peptidases B and S (PEPB and -S) and phosphoglucomutase 2 (PGM2, human nomenclature) to chromosome 1; adenylate kinase 1 (AK1), adenosine deaminase (ADA) and inosine triosephosphatase (ITP) to chromosome 6; triosephosphate isomerase (TPI) to chromosome 8; and glucose phosphate isomerse (GPI) and peptidase D (PEPD) to chromosome 9.^ We also confirm the assignments of 6-phosphogluconate dehydrogenase (PGD), PGM1, enolase 1 (ENO1) and diptheria toxin sensitivity (DTS) to chromosome 2 as well as provisionally assign galactose-1-phosphate uridyl transferase (GALT) and AK2 to chromosome 2. Selection in either HAT or BrdU for hybrids that had retained or lost the chromosome carrying the locus for TK enabled us to assign the loci for TK, galactokinase (GALK) and acid phosphatase 1 (ACP1) to Chinese hamster chromosome 7.^ These results are discussed in relation to current theories on the basis for high frequency of drug resistant autosomal recessive mutants in CHO cells and conservation of mammalian autosomal linkage groups. ^
Resumo:
The pineal gland is known to be light sensitive and to be involved in the seasonal reproduction of male golden hamster Mesocricetus auratus. In general, the pineal gland has been demonstrated to be inhibitory to the reproductive system of the male golden hamster. Melatonin is a pineal hormone which can mimic the action of the pineal gland upon the reproductive system. However, the actual site(s) of melatonin action in the hamster has not been demonstrated. In this study a direct effect of melatonin on the release of FSH and LH from superfused hamster pituitary glands was investigated.^ The superfused pituitary glands showed a stable in vitro basal release of FSH and LH for up to 10 hours. The superfused pituitaries demonstrated reproducible responses to repeated pulses of 10('-8) M LHRH, and a dose-dependent response to stimulation with different concentrations of LHRH.^ Melatonin inhibited the basal release of FSH and LH from superfused hamster pituitary glands. This effect of melatonin was specific and not a general indolamine or catecholamine effect.^ The superfused pituitaries had a diurnal differential responsiveness to physiological concentrations of melatonin with respect to FSH and LH release which were related to the light cycle used to maintain the experimental animals. A LD 14:10 photoperiod cycle was used with light on from 5 a.m. till 7 p.m.. With pituitary glands obtained at 8:30 a.m., the basal release of FSH exhibited an initial inhibition, a gradual rebound at approximately two hours after the beginning of melatonin superfusion, and a significant overshoot of FSH release after the cessation of infusion with melatonin (Morning Response). If the pituitary glands were obtained from hamsters which were sacrificed at 3:30 p.m., the release rate of FSH exhibited an inhibition during the entire period of melatonin infusion with a rebound effect appearing only after melatonin infusion was discontinued (Afternoon Response). There was no significant difference in the responsiveness of the pituitary gland to infusion with melatonin at either 8:30 a.m. or 3:30 p.m. with respect to LH release. Also, melatonin could not inhibit the gonadotropins response to continuous superfusion with 10('-9) M LHRH in pituitaries obtained at either 8:30 a.m. or 3:30 p.m., nor inhibit the stimulatory effect of pulsatile 10('-9) M LHRH. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI^
Resumo:
The adult male golden hamster, when exposed to blinding (BL), short photoperiod (SP), or daily melatonin injections (MEL) demonstrates dramatic reproductive collapse. This collapse can be blocked by removal of the pineal gland prior to treatment. Reproductive collapse is characterized by a dramatic decrease in both testicular weight and serum gonadotropin titers. The present study was designed to examine the interactions of the hypothalamus and pituitary gland during testicular regression, and to specifically compare and contrast changes caused by the three commonly employed methods of inducing testicular regression (BL,SP,MEL). Hypothalamic LHRH content was altered by all three treatments. There was an initial increase in content of LHRH that occurred concomitantly with the decreased serum gonadotropin titers, followed by a precipitous decline in LHRH content which reflected the rapid increases in both serum LH and FSH which occur during spontaneous testicular recrudescence. In vitro pituitary responsiveness was altered by all three treatments: there was a decline in basal and maximally stimulatable release of both LH and FSH which paralleled the fall of serum gonadotropins. During recrudescence both basal and maximal release dramatically increased in a manner comparable to serum hormone levels. While all three treatments were equally effective in their ability to induce changes at all levels of the endocrine system, there were important temporal differences in the effects of the various treatments. Melatonin injections induced the most rapid changes in endocrine parameters, followed by exposure to short photoperiod. Blinding required the most time to induce the same changes. This study has demonstrated that pineal-mediated testicular regression is a process which involves dynamic changes in multiply-dependent endocrine relationships, and proper evaluation of these changes must be performed with specific temporal events in mind. ^
Resumo:
Non-pregnant, female adult rats pretreated with either phenobarbital (PB) or (beta)-naphthoflavone ((beta)NF) through short-course intraperitoneal injections were shown by sodium dithionite-reduced carbon monoxide difference spectroscopy and NADPH-cytochrome c in vitro assay to contain cytochrome P-450 and NADPH-dependent reductase associated with the microsomal fraction of colon mucosa. These two protein components of the mixed function oxidase system were released from the microsomal membrane, resolved from each other, and partially purified by using a combination of techniques including solubilization in nonionic detergent followed by ultracentrifugation, anion exchange and adsorption column chromatographies, native gel electrophoresis, polyethylene glycol fractionation and ultrafiltration.^ In vitro reconstitution assays demonstrated the cytochrome P-450 fraction as the site of substrate and molecular oxygen binding. By the use of immunochemical techniques including radial immunodiffusion, Ouchterlony double diffusion and protein electroblotting, the cytochrome P-450 fraction was shown to contain at least 5 forms of the protein, having molecular weights as determined by SDS gel electrophoresis identical to the corresponding hepatic cytochrome P-450. Estimation of total cytochrome P-450 content confirmed the preferential induction of particular forms in response to the appropriate drug pretreatment.^ The colonic NADPH-dependent reductase was isolated from native gel electrophoresis and second dimensional SDS gel electrophoresis was performed in parallel to that for purified reductase from liver. Comparative electrophoretic mobilities together with immunochemical analysis, as with the cytochrome P-450s, reconstitution assays, and kinetic characterization using artificial electron acceptors, gave conclusive proof of the structural and functional homology between the colon and liver sources of the enzyme.^ Drug metabolism was performed in the reconstituted mixed function oxidase system containing a particular purified liver cytochrome P-450 form or partially pure colon cytochrome P-450 fraction plus colon or liver reductase and synthetic lipid vesicles. The two drugs, benzo{(alpha)}pyrene and benzphetamine, which are most representative of the action of system in liver, lung and kidney, were tested to determine the specificity of the reconstituted system. The kinetics of benzo{(alpha)}pyrene hydroxylation were followed fluorimetrically for 3-hydroxybenzo{(alpha)}pyrene production. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^
Resumo:
A UV-induced mutation of the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPD) was characterized in the CHO clone A24. The asymmetric 4-banded zymogram and an in vitro GAPD activity equal to that of wild type cells were not consistent with models of a mutant heterozygote producing equal amounts of wild type and either catalytically active or inactive mutant subunits that interacted randomly. Cumulative evidence indicated that the site of the mutation was the GAPD structural locus expressed in CHO wild type cells, and that the mutant allele coded for a subunit that differed from the wild type subunit in stability and kinetics. The evidence included the appearance of a fifth band, the putative mutant homotetramer, after addition of the substrate glyceraldehyde-3-phosphate (GAP) to the gel matrix; dilution experiments indicating stability differences between the subunits; experiments with subsaturating levels of GAP indicating differences in affinity for the substrate; GAPD zymograms of A24 x mouse hybrids that were consistent with the presence of two distinct A24 subunits; independent segregation of A24 wild type and mutant electrophoretic bands from the hybrids, which was inconsistent with models of mutation of a locus involved in posttranslational modification; the mapping of both wild type and mutant forms of GAPD to chromosome 8; and the failure to detect any evidence of posttranslational modification (of other A24 isozymes, or through mixing of homogenates of A24 and mouse).^ The extent of skewing of the zymogram toward the wild type band, and the unreduced in vitro activity were inconsistent with models based solely on differences in activity of the two subunits. Comparison of wild type homotetramer bands in wild type cells and A24 suggested the latter had a preponderance of wild type subunits over mutant subunits, and had more GAPD tetramers than did CHO controls.^ Two CHO linkages, GAPD-triose phosphate isomerase, and acid phosphatase 2-adenosine deaminase were reported provisionally, and several others were confirmed. ^