5 resultados para Hair follicle
em DigitalCommons@The Texas Medical Center
Resumo:
The object of this work was to study the possibility that microtubule assembly might be involved in radiation sensitivity effect. The proliferating hair follicle was used to study the effects of cooling c-AMP, colcemid, and vincristine on the survival of the hair after irradiation. It was found that after 2 hours of cooling at the rewarming stage of the hair follicles, the sensitivity to irradiation increased and colcemid reversed this effect. c-AMP decreased radiosensitivity and together with colcemid, sensitivity decreased considerably. It is proposed that the assembly of microtubules is sensitive to irradiation.^ Total tubulin in L-P59 tumor measured immediately after irradiation was found to decrease in a dose specific manner after single doses ranging from 500 to 2000 rad. It is proposed that the change in Ca('2+) concentration after irradiation might cause this effect. Irradiation inhibited the increase in specific viscosity of 3x and 1x tubulin irradiated at the time of assembly. A small reduction in specific viscosity was found when polymerized microtubules were irradiated.^ From these experiments it is proposed that the assembly of microtubules is affected by irradiation. It may be the result of an increase in CA('2+) concentration in the tissue after irradiation or an inactivation of the initiation centers. The effects of irradiation on unassembled tubulin or assembled microtubules is negligible. ^
Resumo:
STATs play crucial roles in a wide variety of biological functions, including development, proliferation, differentiation, migration and in cancer development. In the present study, we examined the impact of Stat3 deletion or activation on behavior of keratinocytes, including keratinocyte stem cells (KSCs). Deletion of Stat3 specifically in the bulge region of the hair follicle using K15.CrePR1 X Stat3fl/fl mice led to decreased tumor development by altering survival of bulge region KSCs. To further understand the role of KSCs in skin tumorigenesis, K5.Stat3C transgenic (Tg) mice which express a constitutively active/dimerized form of Stat3 called Stat3C via the bovine keratin 5 (K5) promoter were studied. The number of CD34 and α6 integrin positive cells was significantly reduced in Tg mice as compared to non-transgenic (NTg) littermates. There was a concomitant increase in the progenitor populations (Lgr-6, Lrig-1 and Sca-1) in the Tg mice vs. the stem cell population (CD34 and Keratin15). To investigate the mechanism underlying the increase in the progenitor population at the expense of bulge region KSCs we examined if Stat3C expression was involved in inducing migration of the bulge region KSCs. There was altered β-catenin and α6-integrin expression in the hair follicles of Tg mice, which may have contributed to reduced adhesive interactions between the epithelial cells and the basement membrane facilitating migration out of the niche. To further study the effect of Stat3 on differentiation of keratinocytes we analyzed the epidermal keratinocytes in K5.Cre X Stat3fl/fl mice. There was an increase in the expression of epidermal differentiation markers in the Stat3 knockout mice. These data suggest that deletion of Stat3 in the epidermis and hair follicle induced differentiation in these cells. Preliminary studies done with the BK5.Stat3C mouse model suggests that multiple hair follicle stem/progenitor populations may be involved in skin tumor development and progression in this model of skin tumorigenesis. Overall, these data suggest that Stat3 plays an important role in differentiation as well as migration of keratinocytes and that these effects may play a role during epithelial carcinogenesis.
Resumo:
The tonotopic organization of the mammalian cochlea is accompanied by structural gradients which include the somatic lengths of outer hair cells (OHCs). These receptors rest upon the vibrating portion of the basilar membrane and have been reported to exhibit motile responses following chemical and electrical stimulation. These movements were examined in detail in this dissertation. It was found that isolated OHCs cultured in vitro respond to chemical depolarization with slow tonic movements, and to electrical waveforms with bi-directional, frequency following movements extending from DC to at least 10 kHz.^ Slow contractions were also elicited following electrical stimulation, bath incubation in carbachol (a cholinergic agonist), and increases in extracellular K+ concentration as little as 50 mM.^ Isolated OHCs display anatomical features which are remarkable when contrasted with those prepared from intact receptor organs. A complex structure located between the cuticular plate and the nuclear membrane was consistently observed and was examined by serial cross-sections which revealed a network of non-membrane bound densities. This corresponded to a granular complex seen at the light microscope level. The complex was composed of dense regions of organelles, striated structures embedded within the core, and a circumferential network of microtubules residing in the peri-nuclear portion of the cell. In cells which had lost their nuclear attachment to the terminal synaptic body, the granular complex could be made to contract without effecting any change in cellular length, implying that the complex may be the driving force behind certain aspects of the motile response.^ Most cells displayed movements which revealed asymmetries analogous to those reported for OHC receptor potentials in vivo. The contraction phase (for longer cells) was shown to have a small time constant (approximately 400 microseconds) and saturated with limited displacements. The expansion phase had time constants as large as 1.3 milliseconds but yielded displacements as much as 60 percent larger than those seen for contractions.^ Additional waveform characteristics seen in the in vivo response could be emulated either by biasing the cell's resting length with either direct current, triggering contractions via large electrical displacements, or incubation with depolarizing compounds.^ Alternatively, short (20-30 um) cells revealed more linear response characteristics to the probe stimulus. Partial saturation was achieved and revealed a DC component which was opposite in polarity to that seen in longer cells. (Abstract shortened with permission of author.) ^
Resumo:
Trace metal imbalances have been implicated in several disease and nutritional states. There is mounting concern to identify the nutritional balance of the trace metals needed for growth, mental acuity and physical functioning. These two factors, diseases in which trace metals show involvement and nutritional balance, have made it necessary to be able to accurately describe the trace metal balances of an individual. Although several investigators have measured the concentration of trace metals in the hair and related those observed concentrations to various disease and nutritional states, no one has satisfactorily answered the questions of whether hair is useful to determine trace metal imbalances, whether the concentrations found in hair reflect tissue or serum concentrations of the trace metals, or whether any tissue accurately reflects body status of the trace metals.^ Male mice were used to examine several tissues, heart, liver, kidney, spleen, intestine, brain, bone, hair and serum for copper and zinc concentrations. The environment and dietary intake of the animals were carefully controlled, so that environmental and physical variables were minimized. Dietary intake of zinc was varied while copper intake was held constant. Each experimental diet group was matched with a pair fed control group.^ Of the tissues examined, only the serum was indicative of an early state of zinc imbalance. Neither hair nor the other tissues examined for copper and zinc concentrations were indicative of an acute zinc imbalance in a normal mature mouse. Zinc deficiencies or excesses may manifest themself differently in the chronic imbalance state or in the weanling, aged or traumatized mouse. The tissue response to zinc imbalance may vary in these cases. ^